Gyrification: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Daniel Mietchen
(slight expansion)
imported>Daniel Mietchen
(intrawiki)
Line 9: Line 9:
  | pages = 137-58
  | pages = 137-58
  | url = http://www.ncbi.nlm.nih.gov/pubmed/2645619  
  | url = http://www.ncbi.nlm.nih.gov/pubmed/2645619  
| accessdate = 2008-04-22
}}</ref><ref name=Armstrong1995>{{cite journal
}}</ref><ref name=Armstrong1995>{{cite journal
  | author = Armstrong, E.
  | author = Armstrong, E.
Line 20: Line 19:
  | pages = 56-63
  | pages = 56-63
  | url = http://cercor.oxfordjournals.org/cgi/content/abstract/5/1/56  
  | url = http://cercor.oxfordjournals.org/cgi/content/abstract/5/1/56  
| accessdate = 2008-04-22
}}</ref><ref name=Mayhew1996>{{cite journal
}}</ref><ref name=Mayhew1996>{{cite journal
  | author = Mayhew, T.M.
  | author = Mayhew, T.M.
Line 31: Line 29:
  | pages = 53
  | pages = 53
  | url = http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1167632  
  | url = http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1167632  
| accessdate = 2008-04-22
}}</ref>.  
}}</ref>.  


Line 44: Line 41:
  | pages = 257-269
  | pages = 257-269
  | url = http://brain.oxfordjournals.org/cgi/content/abstract/120/2/257  
  | url = http://brain.oxfordjournals.org/cgi/content/abstract/120/2/257  
| accessdate = 2008-04-22
}}</ref><ref name=Chenn2002>{{citation
}}</ref><ref name=Chenn2002>{{citation
  | author = Chenn, Anjen; Walsh, Christopher A.
  | author = Chenn, Anjen; Walsh, Christopher A.
Line 65: Line 61:
  | pages = 313-8
  | pages = 313-8
  | url = http://www.nature.com/nature/journal/v385/n6614/abs/385313a0.html  
  | url = http://www.nature.com/nature/journal/v385/n6614/abs/385313a0.html  
| accessdate = 2008-04-22
}}</ref><ref name=Mora2006>{{cite journal
}}</ref><ref name=Mora2006>{{cite journal
  | author = Mora, T.
  | author = Mora, T.
Line 76: Line 71:
  | pages = 119-124
  | pages = 119-124
  | url = http://www.springerlink.com/index/V446J5073H3417L0.pdf  
  | url = http://www.springerlink.com/index/V446J5073H3417L0.pdf  
| accessdate = 2008-04-22
}}</ref>.  
}}</ref>.  
Possible causes of the non-isotropy include [[thermal]] [[noise]], variations in the number and timing of [[cell division]]s, [[cell migration]], [[cortical connectivity]], [[pruning]], [[brain size]] and [[metabolism]] ([[phospholipid]]s in particular), all of which may interact<ref name=Price2004>{{cite journal
Possible causes of the non-isotropy include [[thermal]] [[noise]], variations in the number and timing of [[cell division]]s, [[cell migration]], [[cortical connectivity]], [[pruning]], [[brain size]] and [[metabolism]] ([[phospholipid]]s in particular), all of which may interact<ref name=Price2004>{{cite journal
Line 87: Line 81:
  | pages = 362-364
  | pages = 362-364
  | url = http://linkinghub.elsevier.com/retrieve/pii/S0166223604001304  
  | url = http://linkinghub.elsevier.com/retrieve/pii/S0166223604001304  
| accessdate = 2008-04-22
}}</ref><ref name=Toro2008>{{cite journal
}}</ref><ref name=Toro2008>{{cite journal
  | author = Toro, R.
  | author = Toro, R.
Line 95: Line 88:
  | journal = Cerebral Cortex
  | journal = Cerebral Cortex
  | url = http://cercor.oxfordjournals.org/cgi/content/abstract/bhm261v1  
  | url = http://cercor.oxfordjournals.org/cgi/content/abstract/bhm261v1  
| accessdate = 2008-04-22
}}</ref>.  
}}</ref>.  


This multitude of underlying processes has rendered the concept of gyrification increasingly important for clinical diagnostics in recent years, since gyrification appears to correlate with measures of intelligence <ref name= Luders2007>{{citation
This multitude of underlying processes has rendered the concept of gyrification increasingly important for [[clinical diagnostics]] in recent years, since gyrification in some areas of the [[human brain]] appears to correlate with measures of [[ (brain power)|intelligence]] <ref name= Luders2007>{{citation
  | author = Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian
  | author = Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian
  | year = 2007
  | year = 2007
Line 108: Line 100:
  | doi = 10.1093/cercor/bhm227
  | doi = 10.1093/cercor/bhm227
  | pmid = 18089578
  | pmid = 18089578
}}</ref>, and disturbances in the folding pattern &mdash; as determined by non-invasive [[neuroimaging]] &mdash; can be taken as indicators of [[neuropsychiatric disease]]s. Patients with [[schizophrenia]] or [[Williams syndrome]], for example, can be readily distinguished from [[healthy control]] populations on the basis of gyrification measures<ref name=Schmitt2002>{{cite journal
}}</ref>, and disturbances in the folding pattern &mdash; as determined by non-invasive [[neuroimaging]] &mdash; can be taken as indicators of [[neuropsychiatric disease]]s. Patients with [[schizophrenia]] or [[Williams syndrome]], for example, can be readily distinguished from [[healthy control]] populations on the basis of gyrification measures<ref name=White2003>{{citation
| author = White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V.
| year = 2003
| title = Gyrification abnormalities in childhood- and adolescent-onset schizophrenia
| journal = Biological Psychiatry
| volume = 54
| issue = 4
| pages = 418–426
| doi = 10.1016/S0006-3223(03)00065-9
| url = http://linkinghub.elsevier.com/retrieve/pii/S0006322303000659
}}</ref><ref name=Schmitt2002>{{cite journal
  | author = Schmitt, J.E.
  | author = Schmitt, J.E.
  | coauthors = Watts, K.; Eliez, S.; Bellugi, U.; Galaburda, A.M.; Reiss, A.L.
  | coauthors = Watts, K.; Eliez, S.; Bellugi, U.; Galaburda, A.M.; Reiss, A.L.

Revision as of 05:19, 24 September 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Addendum [?]
 
This editable Main Article is under development and subject to a disclaimer.

In brain anatomy, gyrification (also known as foliation) refers to the folding of the cerebral and cerebellar cortices during brain development in many vertebrate taxa, including songbirds, cetaceans and primates[1][2][3].

While the extent of cortical folding has been found to be partly determined by genetic factors[4][5], the underlying biomechanical mechanisms are not yet well understood. The overall folding pattern, however, can be mechanistically explained in terms of the cerebral cortex resembling a gel that buckles under the influence of non-isotropic forces[6][7]. Possible causes of the non-isotropy include thermal noise, variations in the number and timing of cell divisions, cell migration, cortical connectivity, pruning, brain size and metabolism (phospholipids in particular), all of which may interact[8][9].

This multitude of underlying processes has rendered the concept of gyrification increasingly important for clinical diagnostics in recent years, since gyrification in some areas of the human brain appears to correlate with measures of intelligence [10], and disturbances in the folding pattern — as determined by non-invasive neuroimaging — can be taken as indicators of neuropsychiatric diseases. Patients with schizophrenia or Williams syndrome, for example, can be readily distinguished from healthy control populations on the basis of gyrification measures[11][12].

References

  1. Hofman, M.A. (1989). "On the evolution and geometry of the brain in mammals.". Prog Neurobiol 32 (2): 137-58.
  2. Armstrong, E.; Schleicher, A.; Omran, H.; Curtis, M.; Zilles, K. (1995). "The Ontogeny of Human Gyrification". Cerebral Cortex 5 (1): 56-63.
  3. Mayhew, T.M.; Mwamengele, G.L.; Dantzer, V.; Williams, S. (1996). "The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.". Journal of Anatomy 188 (Pt 1): 53.
  4. Bartley, A.J.; Jones, D.W.; Weinberger, D.R.. "Genetic variability of human brain size and cortical gyral patterns". Brain 120 (2): 257-269.
  5. Chenn, Anjen; Walsh, Christopher A. (2002), "Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors", Science 297 (5580): 365–9, DOI:10.1126/science.1074192 [e]
  6. Van Essen, D.C. (1997). "A tension-based theory of morphogenesis and compact wiring in the central nervous system". Nature 385 (6614): 313-8.
  7. Mora, T.; Boudaoud, A. (2006). "Buckling of swelling gels". The European Physical Journal E - Soft Matter 20 (2): 119-124.
  8. Price, D.J. (2004). "Lipids make smooth brains gyrate". Trends in Neurosciences 27 (7): 362-364.
  9. Toro, R.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. (2008). "Brain Size and Folding of the Human Cerebral Cortex". Cerebral Cortex.
  10. Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian (2007), "Mapping the Relationship between Cortical Convolution and Intelligence: Effects of Gender", Cerebral Cortex 18 (9): 2019, DOI:10.1093/cercor/bhm227
  11. White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V. (2003), "Gyrification abnormalities in childhood- and adolescent-onset schizophrenia", Biological Psychiatry 54 (4): 418–426, DOI:10.1016/S0006-3223(03)00065-9
  12. Schmitt, J.E.; Watts, K.; Eliez, S.; Bellugi, U.; Galaburda, A.M.; Reiss, A.L. (2002). "Increased gyrification in Williams syndrome: evidence using 3D MRI methods". Developmental Medicine & Child Neurology 44 (5): 292-295. DOI:10.1111/j.1469-8749.2002.tb00813.x. Research Blogging.