G-protein-coupled receptor kinase: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Robert Badgett
No edit summary
imported>David E. Volk
m (subpages and meta)
Line 1: Line 1:
{{subpages}}
In [[biochemistry]] and [[signal transduction]], '''G-protein-coupled receptor kinases''' are a "family of serine-threonine kinases that are specific for [[G-protein-coupled receptor]]s. They are regulatory proteins that play a role in [[G-protein-coupled receptor]] densensitization."<ref>{{MeSH}}</ref>
In [[biochemistry]] and [[signal transduction]], '''G-protein-coupled receptor kinases''' are a "family of serine-threonine kinases that are specific for [[G-protein-coupled receptor]]s. They are regulatory proteins that play a role in [[G-protein-coupled receptor]] densensitization."<ref>{{MeSH}}</ref>



Revision as of 13:18, 8 March 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In biochemistry and signal transduction, G-protein-coupled receptor kinases are a "family of serine-threonine kinases that are specific for G-protein-coupled receptors. They are regulatory proteins that play a role in G-protein-coupled receptor densensitization."[1]

Pharmacogenomics

Regarding the treatment of heart failure, there is conflicting evidence whether beta-blockers medications are as effective in African-American patients as in Anglo patients.[2] This may be due to a polymorphism in African-American patients of the G protein–coupled cell surface receptor kinase (GRK5) (OMIM) that confers a natural "genetic beta-blockade".[3]

References

  1. Anonymous (2024), G-protein-coupled receptor kinase (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. Shekelle PG, Rich MW, Morton SC, et al (2003). "Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials". J. Am. Coll. Cardiol. 41 (9): 1529–38. PMID 12742294[e]
  3. Liggett, Stephen B et al. 2008. A GRK5 polymorphism that inhibits [beta]-adrenergic receptor signaling is protective in heart failure. Nat Med advanced online publication. http://dx.doi.org/10.1038/nm1750 (Accessed April 29, 2008).