Classical mechanics: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
Line 112: Line 112:
The branch of physics that deals with such velocity is called [[relativistic mechanics]]. The basic [[laws of conservation]] in the [[relativistiv mechanics]] are the same as in the classical mechanics, but such concepts as momentum and energy have to be redefined; the momentum of a particle cannot ne expressed as product of its mass to its velocity; the same refers also to the energy.
The branch of physics that deals with such velocity is called [[relativistic mechanics]]. The basic [[laws of conservation]] in the [[relativistiv mechanics]] are the same as in the classical mechanics, but such concepts as momentum and energy have to be redefined; the momentum of a particle cannot ne expressed as product of its mass to its velocity; the same refers also to the energy.


In telativistic mechanics, the force appears as derivative of momentum with respect to time, but, as the time is not universal, the force also happens to be dependent on the frame reference. The confusive use of the concepts of the classical phycics may lead to the errors like [[inertioid]]s.
In telativistic mechanics, the force appears as derivative of momentum with respect to time, but, as the time is not universal, the force also happens to be dependent on the frame reference. The confusive mixture of the concepts of the classical phycics with those of the relaticistic machanics may lead to the errors like [[inertioid]]s or the [[perpetual motion machine]]s.


====Quantum field theory====
====Quantum field theory====

Revision as of 05:49, 17 March 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Video [?]
 
This editable Main Article is under development and subject to a disclaimer.

Classical mechanics is the part of physics that deals with motion and forces. In its most well-known formulation it is known as Newtonian mechanics, named after Isaac Newton. The model holds for everyday situations such as a car changing lanes on a motorway or a football flying through the air. For very small objects however, quantum mechanics must be applied for accurate results. Similarly, the behaviour of objects which travel at speeds approaching the speed of light or in a strong gravitational field can not be described by classical mechanics alone. For such situations, relativity must be applied.

Apart from Newton's formulation, classical mechanics can also be expressed in the Lagrangian and Hamiltonian formalisms. Hamiltonian mechanics is the starting point for canonical quantum mechanics, while Hamilton's path integral version of quantum field theory begins with Lagrangian mechanics.

Basic concepts

The classical mechanics deals woth bodies, or physical bodies; such a body can be called also a material point. The bodies are described in terms of their coordinates in some specific reference frame. One can imagine the reference frame as a ruler with maks that give valies of the coordinates. In the 3-dimensional space, the coordinates of each body can be treated as 3-vectors.

The coordinate of some body in some reference frame can be expressed as sum of two vestors: vector of coordinates in the old reference frame and the vector of coordinates of the old reference frame in a new reference frame.

Also, in the Newtonian mechanics, it is assumed that there exist time, universal for all the frame ereferences, and the coordinates of all the bodies are smooth functions of time. The description of movements of bodies in terms of time-dependent coordinates is called kinematics.

The bodies are allowed to interact. The interaction is characterised with forces. The forses are treated as 3-dimensional vectors. If several forces act on the body, they affect in a way, equivalent to the force which is a vector sum of all forces applied.

Each body is attributed some positive real number called mass. The mass of each body determiens, how the body reacts to the force by other bodies.

Motion

Any body that moves from one point to another has an average velocity (vav) which is a measure of the rate of change of displacement (x) with time. In equation form:

The instantaneous velocity is then the limit of the average as the time interval ( t) approaches zero:

In a one dimensional system the term speed could be used instead of velocity however in more dimensions the difference between a vector quantity (like velocity which has a magnitude and a direction) and a scalar quantity (such as speed which only has a magnitude) is very important.

If the velocity of a body changes with time the body has acceleration (a). Acceleration is related to velocity in the same way as velocity is to displacement:

, and

One of Newton's inventions, calculus, which was simultaneously and independently invented by Gottfried Wilhelm Leibniz, is useful in mechanics. Acceleration is the derivative of velocity (with respect to time), which is the derivative of displacement (with respect to time).

Newton's laws of motion

Newton's laws of motion help to analyze the principles of dynamics, the relationship of motion to the forces that cause it. These three laws were first published in 1687 in Philosophiae Naturalis Principia Mathematica. The following is an English translation of the laws:

  • First Law: There exist such a reference eframe, in which any body that dose not interact with other bodies moves with acceleration zero.

Such a referece frame is called inetrial reference frame. Any reference frame, that moves with constant velocity with respect to some reference frame is also inertial frame reference. This property of bodies inthe classical mechanics is called inertia, a tendency to keep moving in the same direction until another force causes it to stop or change direction. By default, the frame references are assumed to be inertial.

  • Second Law: If a net force acts on a body, the body accelerates. The force equals the mass of the body multiplied by the acceleration.

This relation of force and motion is a fundamental law of nature. The acceleration of an object is directly proportional to the net force on the object and inversely proportional to the mass of the object. This can be written in equation form as:

where F is the net force needed to cause an acceleration a in a body of mass m. Note that F and a are vectors, thus a change in the direction of motion is also a form of acceleration.

  • Third Law: If body A exerts a force on body B, then body B exerts a force on body A. This force will have an equal magnitude and opposite direction.
An illustration of forces acting on an object. g is the acceleration due to the Earth's gravitational field. The object is at rest.

This is less formally stated as; every action has an equal and opposite reaction. It's important to remember these two forces act on different bodies. For example a ball thrown in the air is being pulled towards the centre of the earth by a force due to gravity and is exerting a force of equal magnitude pulling the earth towards the ball. The acceleration on the earth is negligible because it has a much larger mass as stated in the second law. A useful example is attempting a tug of war on ice skates. No matter who is stronger, the person with the largest mass will inevitably win.

These laws are only valid in an inertial frame of reference or, as Newton called it, in an absolute space. While Newton's laws can be stated very easily, it can be hard to apply them to real-world situations where there are many different forces acting on an object. When two objects interact in contact with each other there are contact forces in action. Usually a normal (perpendicular) force and a friction force. The friction force always acts in a direction opposite to the direction of the force (it opposes the change).

Laws of conservation

Many basical laws of conservation follow from the Laws of Newton:

The center of mass of any isolated system of bodies is linear function of time;

The momentum of any isolated system of bodies remains constant;

The angular momentum of any isolated system remains constant;

The Energy of any isolated system remains constant.

The intents to make an apparatus, a machine, that follows the laws by Newton, but bypasses, violates the Laws of conservation refer to errors in the consideration or to frauds. Some of such errors have special names: the Perpetual motion machine refer to an apparatus that violate the law of conservation of energy; while the inertioid refers to an apparatus that violates the conservation of momentum. Violation of the law of movement of the center of mass could be called teleportation, but it is not so often as a fraud, if at all; this term refers to the science-fiction, or to trasfer of a quantum state, which has no analogy in the classial mechanics.


Range of validity

The concepts of classical mechanics such as coordinate, universal time have limited range of validity.

Quantum effects

If some system changes its state during time t during an evolution, then, this change can be characterised with action

where E is the range of energies the system has. The time can be related with a period or quasi-period, if the system shows a periodic or quasi-periodic motion. Usually, for the applicability of the Laws of Newton, it is sufficient to have

where is the Planck's constant.

At the consideration of movements with action of order of Planck's constant or smaller, the concept of coordinate becomes a rough approcimation or just invalid; and the quantum mechanics should be used for the description of the system. Usually, this refers to the atomic and molevular systems. However, some pretty macroscopic objects (for example, the electromagentic field in a superconducting cavity or in a system with counting of individual photons) may require the quantum description.

Relativistic effects

The classical mechanics works for slow objects; in some reference frame, the speeds or all the objects should be small compared to the speed of light. This limit follows from the postulate that no one material object can move with speed of light or faster. If some spacecraft duting long time moves with the same acceleration, say, g, then, within the Newtonian mechanics, owe would espect its speed to be linear function of time. In principle the acceleration can g in the so-called jouned crame referencs (id est, the frame reference, specific for each moment t of time, characterised in that the speed of the body in this reference frame is zero just at the moment t). However, the acceleration defined as second derivative of the coordinate with respect to time may be something different, in such a way that the velocity of that spacecract approaches c, but never reaches it.

The branch of physics that deals with such velocity is called relativistic mechanics. The basic laws of conservation in the relativistiv mechanics are the same as in the classical mechanics, but such concepts as momentum and energy have to be redefined; the momentum of a particle cannot ne expressed as product of its mass to its velocity; the same refers also to the energy.

In telativistic mechanics, the force appears as derivative of momentum with respect to time, but, as the time is not universal, the force also happens to be dependent on the frame reference. The confusive mixture of the concepts of the classical phycics with those of the relaticistic machanics may lead to the errors like inertioids or the perpetual motion machines.

Quantum field theory

In the calse when the speed is high, and the action is small, the creation of new material objects becomes possible. In this case one cannot use the concepts of mechancis in the common sense: not only the coordinates of the particles cannot be correctly determined, but even the number of particle cannot be characterized with an integer number. This case revers to the Quantum field theory.

Homogeneity of space

The isotropy and homoheneity of the space–time is basic concept of mechancis, both classical and quantum and both relativistic and non-relativistic. However, this homehenieity is only approximation: the gravitational interaction disturbs the metrics of the space. This disturbance may be significant due to huge masses in vicinity of the physical system. The space has also the wuantum fluctuations of metrics and even topology. In such a way, the smooth and flat space and time, used in the classical mechanics, it is just very good approximation. It is expected to be valid, while the distances are much larger than the Planck distance, and the time intervals considered are larger than the Planck time. These scales of space and time are really small; at the beginning of century XXI, no one experiment may approach this scale measuring time and distance.

Technology is far from the limits

The classical mechanics has fundamental limits. The devices for measurement of distance cannot be very small and very light; over-vice, they, by themselve, become quantum objects. The devices cannot be too heavy; over-vice, they disturb the metrics of space due to the gravitational interaction. In this sense there is no physical limit, in which the classical mechanics is "mathematically exact". However, the range of masses and velocities and the precision of the phycical devices, is many orders of magnitude far from these dundamental limits. In partucular, all the mechanical machines, including the spacecrafts and satellites, are described with the classical mechanics, and extremelly precise measurements are necessary to see the deviation from the laws of Newton due to the relativistic effects. At leaast for the beginning of century XXI, such a deviation appears only in the second order of the perturbation theory with respect to v/c, id est, the deviation from the Newtonian nechanics is of order of (v/c)2. Even at the cosmic speeds, say, v/c=10-6, the relative deviation is at the level of 10-12 and is barely detectable.

References