Selberg sieve

From Citizendium
Revision as of 14:48, 29 October 2008 by imported>Richard Pinch (New article, my own wording from Wikipedia)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, in the field of number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.

Description

In terms of sieve theory the Selberg sieve is of combinatorial type: that is, derives from a careful use of the inclusion-exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an upper bound for the size of the sifted set.

Let A be a set of positive integers ≤ x and let P be a set of primes. For each p in P, let Ap denote the set of elements of A divisible by p and extend this to let Ad the intersection of the Ap for p dividing d, when d is a product of distinct primes from P. Further let A1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are ≤ z. The object of the sieve is to estimate

We assume that |Ad| may be estimated by

where f is a multiplicative function and X   =   |A|. Let the function g be obtained from f by Möbius inversion, that is

where μ is the Möbius function. Put

Then

It is often useful to estimate V(z) by the bound

Applications

  • The Brun-Titchmarsh theorem on the number of primes in an arithmetic progression;
  • The number of nx such that n is coprime to φ(n) is asymptotic to e x / log log log (x) .

References