Orthogonal array

From Citizendium
Revision as of 03:10, 23 June 2008 by imported>Andrey Khalyavin (New page: '''Orthogonal array''' with ''N'' runs, ''k'' factors, ''s'' symbols and strength ''t'' is a set of ''N'' ''k''-tuples (called runs) with elements from <math>\{0,\dots,s-1\}</math> such th...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Orthogonal array with N runs, k factors, s symbols and strength t is a set of N k-tuples (called runs) with elements from such that for every set of t coordinates every combination of symbols in this coordiantes appears equal numer of times across the runs. The common notion of such orthogonal array is . It is easy to see, that N is divisible by number of all possible symbol combinations in the t coordinates — . The number is called an index of orthogonal array.

Statistical applications

Statistics is a primary application of orthogonal arrays. Experiments based on orthogonal arrays require less tests and yet provide a lot of info.

Particular cases

Some of mathematical constructions are particular cases of orthogonal arrays. For example, latin squares are . In order to see this, consider all triples where — symbol in i-th row and j-th column in the latic square. Then such triples for all form an orthogonal array with strength 2: there is a single cell with given coordinates, single cell with given row and symbol in the cell and a single cell with given column and symbol in the cell. Here is a simple example:

Latin square Orthogonal array
1 2 3
3 1 2
2 3 1
(1,1,1)
(1,2,2)
(1,3,3)
(2,1,3)
(2,2,1)
(2,3,2)
(3,1,2)
(3,2,3)
(3,3,1)

A set of k orthogonal latin square can be converted to in a similar way.