NMR spectroscopy/Catalogs/Nuclear Magnetic Resonance spectroscopy experiments
Nuclear Magnetic Resonance experiments can have multiple variations added, such as form of solvent suppression, sensitivity enhancement, form of inversion or soft pulses, decoupling schemes and so on. This list refers to the basic form of the experiment and references, in general, but not always, are made to the earliest published form of the experiment.
These experiments have been separated into those generally used for solution Nuclear Magnetic Resonance (NMR) spectroscopy, magnetic resonance imaging spectroscopy (MRI) and solid-state NMR spectroscopy.
Atom notation key
Atom Name | Description |
---|---|
C | alpha carbon of current amino acid |
C | alpha carbon of the previous amino acid |
C | beta carbon of current amino acid |
C | beta carbon of the previous amino acid |
CO | carbonyl carbon of the current amino acid |
CO-1 | carbonyl carbon of the previous amino acid |
C | any carbon of the previous amino acid |
H | alpha proton of current amino acid |
H | alpha proton of the previous amino acid |
HN | amide proton |
NH | amide nitrogen |
H | any proton of the current amino acid |
H | any proton of the previous amino acid |
NMR experiments - solution
NMR Experiment Name | Atoms Observed | Common Use | Weaknesses | Reference(s) |
---|---|---|---|---|
APT | 13C | seperate C, CH, CH2 and CH3 | carbon detection | Patt & Schoolery [1] |
BEST | Decoupling scheme | Excellent Decoupling scheme | none | Zhang & Gorenstein[2] |
BIRD | Decoupling scheme | BIlinear Rotation Decoupling | - | Garbow, Weitekamp & Pines[3] |
CBCA(CO)NH | HN, NH, C, C | Protein NMR assignments | Hn exchange | Grzesiek & Bax [4] |
CBCANH | HN, NH, C, C, C, C | Protein NMR assignments | Hn exchange | Grzesiek & Bax [5] |
CHIRP | Adiabatic Decoupling scheme | linear for wide sweep width | See Kupce & Freeman[6] and references therein | |
COSY | Hi, Hi-1, Hi+1 | Correlate neighboring protons | signal overlap | Aue et al[7] and Bax and Freeman[8] |
COLOC | 1H & 13C | COrrleation via LOng-range Coupling | - | Kessler et al.[9] |
DEPT (13C-DEPT) | 13C | Differentiate CH, CH2 and CH3 | don't observe quaternary 13C | Bendell, Doddrell & Pegg [10] |
DIPSI | Decoupling/Spin-lock scheme | decoupling or TOCSY | Shaka, Lee & Pines [11] | |
Double WURST | Decoupling scheme | Removes Bloch-Seigert Shifts | Zhang & Gorenstein [12] | |
DQF-COSY | see COSY | Reduces large Methyl peaks | - | Piantini, Sorensen & Ernst [13] |
GARP | Decoupling scheme | Better than MLEV & WALTZ | worse than adiabatic (WURST) | Shaka, Barker & Freeman [14] |
HACAHB | H, C, H | Selective COSY | water signal overlaps some H | Grzesiek et al. [15] |
HBHA(CO)NH | HN, NH, H, H | Previous alpha/beta protons | Hn exchange | Grzesiek & Bax [16] |
HBCBCACOCAHA | H, C, C, CO | Protein NMR assignments | 13C relaxation | Lewis Kay [17] |
HBCBCACONNH | H, C, C, NH+1, HN+1 | Protein NMR Assignments | Hn exchange | Grzesiek and Bax [4] |
(HB)CB(CGCD)HD | C and H of aromatic residues | Protein NMR Assignments | 13C relaxation | Yamazaki, Forman-Kay & Kay [18] |
(HB)CB(CGCDCE)HE | C and H of aromatic residues | Protein NMR Assignments | 13C relaxation | Yamazaki, Forman-Kay & Kay [18] |
(HCA)CO(CA)NH | HN, NH, CO, CO-1 | Protein NMR assignments | Hn exchange | Lohr and Ruterjans[19] |
HCACOCAN | CO, C, H, HN, HN+1, NH, NH+1 | Protein NMR assignments | Hn exchange | Lohr and Ruterjans [19] |
HCAN | H, C, NH, NH+1 | Protein NMR Assignments | water signal overlap | Powers et al. [20] |
HCCH_TOCSY | (Hi-Ci) ---> H | Assign entire spin systems | signal overlap, 13C relaxation | Clore & Gronenborn [21] |
H(CCO)NH | HN, NH, H | Proteins: correlate proton spin system to next amide group | Hn exchange | Grzesiek, Anglister & Bax [22] |
(H)C(CO)NH | HN, NH, Cx-1 | Proteins: correlate carbon spin system to next amide group | Hn exchange | Grzesiek, Anglister & Bax [22] |
HETCOR | Hi, Ci | similar to HSQC | carbon detection | - |
HMBC | Hi, Cj,k,l,m | long-range C-H correlations, aromatic ring assignments | low signal, weak J couplings used | Bax & Summers [23] |
HMQC | Hi, Ci | heteronuclear multiple quantum coherence | - | L. Mueller[24] |
HNCA | HN, NH, C, C | Sequential alpha carbons | weak Ca-1, Hn exchange | Kay, Ikura, Tschudin & Bax [25] |
HNCACB | HN, NH, C, C, C, C | Sequential alpha/beta carbons | weak C,C signals, Hn exchange | Wittekind & Mueller [26] |
HN(CA)CO | HN, NH, CO, CO-1 | Sequential carbonyl carbons | weak CO-1 signals, Hn exchange | Yamazaki, Lee, et al. [27] |
HN(CA)HA | HN, NH, H, H | Sequential alpha protons | H overlap and water signals | Kay et al. [28] |
HN(C)N | HN,NH, NH-1 | Amide to previous nitrogen | Hn exchange | Panchal, Bhavesh & Hosur [29] |
HN(CA)NNH | NH, HN, NH-1, NH+1 | Sequential Protein amide groups | 13C relaxation, HN exchange | Weisemann, Ruterjans & Bermel [30] |
H(NCA)NNH | NH, HN, HN-1,HN+1 | Sequential Protein amide groups | weak CO-1 signals, Hn exchange | Weisemann, Ruterjans & Bermel[30] |
HNCO | HN, NH, CO-1 | Carbonyl carbon assignments | Hn exchange | Ikura, Kay & Bax [31] |
HN(CO)CA | HN, NH, C | Assign previous alpha carbon | Hn exchange | Yamazaki, Lee, et al.[27] |
HN(CO)CACB | HN, NH, C, C | Previous alpha/beta carbons | Hn exchange | - |
HN(COCA)CB | HN, NH, C | Previous beta carbons | Hn exchange | Wittekind & Mueller [26] |
(HN)CO(CO)NH | HN, NH, CO, CO-1 | Previous alpha/beta carbons | C relaxation | Bax & Grzesiek[32] |
HN(CO)HA | HN, NH, H | Previous alpha proton | Hn exchange | - |
HN(CO)HB | HN, NH, H | CO-H coupling | Hn exchange | Grzesiek, Ikura et al. [33] |
HNHA | HN, NH, H | alpha protons & -backbone angles | water peak | Vuister & Bax [34] |
HNHB | HN, NH, H, H | (N-H J-coupling) | Hn exchange | Archer et al. [35] |
HNH | HN(i,i-1,i+1), NH(i,i-1,i+1) | Sequential beta protons & backbone angles | weak Ca/Cb-1 signals, Hn exchange | - |
HNN | HN,NH, NH-1, NH+1 | Amide to sequential nitrogens | Hn exchange | Panchal, Bhavesh & Hosur [29] |
HSQC | Hi, Xi | Correlate heteroatom and attached proton | very sensitive | Bodenhausen & Ruben,[36]John, et al.[37] & Kay et al.[38] |
INADEQUATE | incredible natural abundance double quantum transfer experiment | - | - | Bax, Freeman & Frenkiel[39] |
INEPT | insensitive nuclei enhanced by polarization transfer | part of many modern NMR expts. | - | Morris & Freeman[40] |
LRCC | Methionine C/H---> C and C | Assign Methionine methyls, chi3 angles | high sensitivity | Bax, Delaglio et al.[41] |
LRCH | Methionine C/H---> H | Assign Methionine methyls, chi3 angles | high sensitivity | Bax, Delaglio et al.[41] |
MLEV | 1rst Decoupling scheme | removes J coupling | sensitive to phase imperfections | Levitt, Freeman & Frenkiel[42] |
NOESY | Hi, Hx | 1H-1H distance | structure determinations | Jeener et al.,[43] Kumar, Ernst & Wuthrich[44] and Macura & Ernst[45] |
ROESY | Hi, Hx | 1H-1H distance | rotating frame, works for small molecules | Bothner-By et al.[46] and Hwang & Shaka[47][48] |
TOCSY | Hi----> H | Assign entire H1 spin systems | signal overlap | Braunschweiler & Ernst, [49] and Bax & Davis[50] |
WALTZ | Decoupling scheme | weak on the edges | A.J. Shaka et al. [51],[52] | |
WATERGATE | Protons | Solvent suppression | - | Piotto, Saudek & Sklenar [53] |
WURST | Decoupling scheme | See Kupce & Freeman[54] and references therein |
NMR experiments - Magnetic Resonance Imaging (MRI)
MRI Experiment Name | Full Name | Common Use | Reference(s) |
---|---|---|---|
BOLD | Blood Level Oxygen Dependent | a technique more than a sequence | |
CSSI | Chemical Shift Selective Imaging (or MRS) | Selective Excitation | |
DIFRAD | Diffusion-weighted Radial Aquisition of Data | [55] | |
EPI | Echo Planar Imaging | functional brain imaging | |
FLASH | Fast Low Angle Shot Imaging | fast functional imaging | |
GRE | Gradient Echo Imaging | improved MRI | |
Spin Echo | or Spin Warp | Basic MRI | |
STEAM | Stimulated Echo Imaging | - |
NMR experiments - solid-state
Many solid state experiments are similar to the liquid state experiments, but the sample is spun off axis at the "magic angle". Thus, many of the experiments listed under the solution NMR section can be done in the solid, and have names like MAS-HSQC, MAS-NOESY and so on.
Solid State Experiment Name | Full Name | Common Use | Reference(s) |
---|---|---|---|
CRAMPS | Combined Rotation And Multiple Pulse Spectroscopy | - | |
HRMAS | High Resolution Magic Angle Spinning | a part of many experiments | |
MAS | Magic Angle Spinning | a part of many experiments | |
REDOR | Rotational Echo Double Resonance | - | |
XPOLAR | Cross Polarization | Pine, Gibbs & Waugh[56] |
Further reading
- "NMR of Proteins and Nucleic Acids", Kurt Wuthrich, John Wiley & Sons, New York, N.Y., 1983.
- "Modern NMR Spectroscopy: A Guide for Chemists", Jeremy K.M. Saunders and Brian K. Hunter, Oxford University Press, Oxford, 1987.
- "Principles of Nuclear Magnetic Resonance in One and Two Dimensions", Richard R. Ernst, Geoffrey Bodenhausen and Alexander Wokaun, Clarendon Press, Oxford, 1987. (Heavy on Quantum mechanics, not for the faint of heart!)
- "The Theroy of Decoupling", J. S. Waugh, J. Magn. Reson. 1982, volume 50, page 30.
References
- ↑ Patt, S.L. & Schoolery, J.N. (1982). "Attached Proton Test for Carbon-13 NMR". J. Magn. Reson. 46: 535-539.
- ↑ Zhang, S. & Gorenstein, D.G. (1999). "BEST Homonuclear Adiabatic Decoupling for 13C- and 15N-Double-Labeled Proteins". J. Magn. Reson. 138: 281-287.
- ↑ Garbow, J.R., Weitekamp, D.P. & Pines, A. (1982). "{{{title}}}". Chem. Phys. Lett. 93: 504-508.
- ↑ 4.0 4.1 Grzesiek, S. & Bax, A. (1992). "Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR". J. Am. Chem. Soc. 114: 6291-6293.
- ↑ Grzesiek, S. & Bax, A. (1992). "An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins". J. Magn. Reson. 99: 201-207.
- ↑ Kupce, E. & Freeman, R. (1996). "{{{title}}}". J. Magn. Reson. Series A 118: 299.
- ↑ Aue, W.P., Bartholdi, E. and Ernst, R.R. (1975). "{{{title}}}". J. Chem. Phys. 64: 2229-2246.
- ↑ Bax, A. & Freeman, R. (1981). "Investigation of complex networks of spin-spin coupling by two-dimensional NMR". J. Magn. Reson. 44: 542-561.
- ↑ Kessler, H., Griesinger, C., Zarbock, J. and Loosli, H.R. (1984). "{{{title}}}". J. Magn. Reson. 57: 331-336.
- ↑ Bendrell, M.R., Doddrell, D.M. & Pegg, D.T. (1981). "{{{title}}}". J. Am. Chem. Soc. 103: 4603-4605.
- ↑ Shaka, A.J., Lee, C.J. & Pines, A. (1988). "{{{title}}}". J. Magn. Reson. 77: 274.
- ↑ Zhang, S. & Gorenstein, D.G. (1996). "{{{title}}}". J. Magn. Reson. Series A 123: 181-187.
- ↑ Piantini, U., Sorensen, O.W. & Ernst, R.R. (1982). "{{{title}}}". J. Am. Chem. Soc. 104: 6800-6801.
- ↑ Shaka, A.J., Barker, P.B. & Freeman, R. (1985). "{{{title}}}". J. Magn. Reson. 64: 574.
- ↑ Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. (1995). "Multiple-Quantum Line Narrowing for Measurement of H-H J Couplings in Isotopically Enriched Proteins". J. Am. Chem. Soc. 117: 5312-5315.
- ↑ Grzesiek, S. & Bax, A. (1993). "Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins". J. Biomol. NMR 3: 185-204.
- ↑ Kay, L. E. (1993). "Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13C/, 13C', and 1H chemical shifts in uniformly 13C-labeled proteins dissolved in water". J. Am. Chem. Soc. 115: 2055-2057.
- ↑ 18.0 18.1 Yamazaki, T., Forman-Kay, J. D. & Kay, L. E. (1994). "Two-dimensional NMR experiments for correlating 13C and 1H/ chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings". J. Am. Chem. Soc. 115: 11054-11055.
- ↑ 19.0 19.1 Lohr, F. and Ruterjans, H. (1995). "A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins". J. Biomol. NMR 6: 189-197.
- ↑ Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991). "Three-dimensional Triple-Resonance NMR of 13C/15N-Enriched Proteins Using Constant-Time Evolution". J. Magn. Reson. 94: 209-213.
- ↑ Clore, G. M. & Gronenborn, A. M. (1994). "Multidimensional heteronuclear nuclear magnetic resonance of proteins". Meth. Enzymol. 239: 249-363.
- ↑ 22.0 22.1 Grzesiek, S., Anglister, J. & Bax, A. (1993). "Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-enriched Proteins by Isotopic Mixing of 13C Magnetization". J. Magn. Reson. Series B B101: 114-119.
- ↑ Bax, A. & Summers, M.F. (1986). "Proton and Carbon-13 assigments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR". J. Am. Chem. Soc. 108: 2093-2094.
- ↑ L. Mueller (1979). "Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence". J. Am. Chem. Soc. 101: 4481-4484.
- ↑ Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. (1990). "Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins". J. Magn. Reson. 89: 296.
- ↑ 26.0 26.1 Wittekind, M. & Mueller, L. (1993). "HNCACB, a High-Sensitivy 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins". J. Magn. Reson., Series B. B101: 201-205.
- ↑ 27.0 27.1 Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994). "A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity". J. Am. Chem. Soc. 116: 11655-11666.
- ↑ Kay, L. E., Wittikind, M., McCoy, M. A., Friedrichs, M. S. and Mueller, L. (1992). "4D NMR Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods". J. Magn. Reson. 98: 443-450.
- ↑ 29.0 29.1 Panchal, SC, Bhavesh, NS & Hosur, RV (2001). "Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins". J. Biomol. NMR 20: 135-147.
- ↑ 30.0 30.1 Weisemann, R., Ruterjans, H. & Bermel, W. (1993). "3d Triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins". J. Biomol. NMR 3: 113-120.
- ↑ Ikura, M., Kay, L. E. and Bax, A. (1990). "A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin". Biochemistry 29: 4659-4667.
- ↑ Grzesiek, S. & Bax, A. (1997). "A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins". J. Biomol. NMR 9: 207-211.
- ↑ Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. & Bax, A. (1992). "A 3D Triple-Resonance Technique for Qualitative Measurement of Carbonyl-HFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} J Couplings in Isotopically Enriched Proteins". J. Magn. Reson. 96: 215-221.
- ↑ Vuister, G.W. & Bax, A. (1993). "Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins". J. Am. Chem. Soc. 115: 7772-7777.
- ↑ Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. (1991). "An Alternative 3D NMR Technique for Correlating Backbone 15N with Side Chain H Resonances in Larger Proteins". J. Magn. Reson. 95: 636-641.
- ↑ Bodenhausen, G. & Ruben, D.J. (1980). "{{{title}}}". Chem. Phys. Lett. 69: 185-188.
- ↑ John, Plant & Hurd (1993). "Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters". J. Magn. Reson., Series A A101: 113-117.
- ↑ Kay, Keiffer and Saarinen (1992). "Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity". J. Am. Chem. Soc. 114: 10663-10665.
- ↑ Bax, A., Freeman, R. & Frenkiel, T.A. (1981). "An NMR technique for tracing out the carbon skeleton of an organic molecule". J. Am. Chem. Soc. 103: 2102-2104.
- ↑ Morris, G.A. & Freeman, R. (1979). "Enhancement of nuclear magnetic resonance signals by polization transfer". J. Am. Chem. Soc. 101: 760-762.
- ↑ 41.0 41.1 Bax, A., Delaglio, F., Grzesiek, S. and Vuister, G.W. (1994). "Resonance assignment of methionine methyl groups and 3 angular information from long-range proton-carbon and carbon-carbon J correlation in a calmodulin-peptide complex". J. Biomol. NMR 4: 787-797.
- ↑ Levitt, M. H., Freeman, R. & Frenkiel, T. (1983). "{{{title}}}". Adv. Magn. Reson. 11: 47.
- ↑ Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. (1979). "{{{title}}}". J. Chem. Phys. 71: 4546-4563.
- ↑ Kumar, A., Ernst, R.R. & Wuthrich, K. (1980). "A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules". Biochem. Biophys. Res. Commun. 95: 1-6.
- ↑ Macura, S. & Ernst, R.R. (1980). "Elucidiation of cross relaxation in liquids by two-dimensional NMR spectroscopy". Mol. Phys. 41: 95-117.
- ↑ Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. and Jeanloz, R.W. (1984). "Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame". J. Am. Chem. Soc. 106: 811-813.
- ↑ Hwang, T.L. & Shaka, A.J. (1992). "Cross relaxation without TOCSY: Transverse rotating-frame Overhauser effect spectroscopy". J. Am. Chem. Soc. 114: 3157-3159.
- ↑ Hwang, T.L. & Shaka, A.J. (1993). "Reliable two-dimensional rotating-frame cross-relaxation measurements in coupled spin systems". J. Magn. Reson. Series B B102: 155-165.
- ↑ Braunschweiler, L. & Ernst R.R. (1983). "{{{title}}}". J. Magn. Reson. 53: 521-528.
- ↑ Bax, A. and Davis, D. (1985). "MLEV-17 based two-dimensional homonuclear megnetization transfer spectroscopy". J. Magn. Reson. 65: 355-360.
- ↑ Shaka, A.J., Keeler, J., Frenkiel, T. & Freeman, R. (1983). "{{{title}}}". J. Magn. Reson. 52: 335.
- ↑ Shaka, A.J., Keeler, J. & Freeman, R. (1983). "{{{title}}}". J. Magn. Reson. 53: 313.
- ↑ Piotto, M., Saudek, V. and Sklenar, V. (1992). "Gradient-tailored Excitation for Single-quantum NMR Spectroscopy of Aqueous Solutions". J. Biomol. NMR 2: 661.
- ↑ Kupce, E. & Freeman, R. (1996). "{{{title}}}". J. Magn. Reson. Series A 118: 299.
- ↑ (1999) "{{{title}}}". Magn. Reson. Med. 42: 11-18.
- ↑ Pine, Gibbs & Waugh (1973). "{{{title}}}". J. Chem. Phys. 59: 569.