Revision as of 16:40, 9 December 2008 by imported>Richard Pinch
The Pauli spin matrices (named after physicist Wolfgang Ernst Pauli) are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted:
Algebraic properties
For i = 1, 2, 3:
Commutation relations
The Pauli matrices obey the following commutation and anticommutation relations:
- where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.
The above two relations can be summarized as: