User:Boris Tsirelson/Sandbox1

From Citizendium
< User:Boris Tsirelson
Revision as of 05:34, 23 June 2010 by imported>Boris Tsirelson
Jump to navigation Jump to search

Casacuberta, C & M Castellet, eds. (1992), Mathematical research today and tomorrow: Viewpoints of seven Fields medalists, Lecture Notes in Mathematics, vol. 1525, Springer-Verlag, ISBN 3-540-56011-4.



Kurt Gödel

In 1931 and while still in Vienna, Gödel published his famous incompleteness theorems in "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme" (called in English "On formally undecidable propositions of Principia Mathematica and related systems"). In that article, he proved for any computable axiomatic system that is powerful enough to describe the arithmetic of the natural numbers (e.g. the Peano axioms or ZFC), that:

  1. If the system is consistent, it cannot be complete.
  2. The consistency of the axioms cannot be proven within the system.

These theorems ended a half-century of attempts, beginning with the work of Frege and culminating in Principia Mathematica and Hilbert's formalism, to find a set of axioms sufficient for all mathematics. The incompleteness theorems also imply that not all mathematical questions are computable.

Formalism (mathematics)

A major early proponent of formalism was David Hilbert, whose program was intended to be a complete and consistent axiomatization of all of mathematics. Hilbert aimed to show the consistency of mathematical systems from the assumption that the "finitary arithmetic" (a subsystem of the usual arithmetic of the positive integers, chosen to be philosophically uncontroversial) was consistent (i.e. no contradictions can be derived from the system).

Hilbert's goals of creating a system of mathematics that is both complete and consistent was dealt a fatal blow by the second of Gödel's incompleteness theorems, which states that sufficiently expressive consistent axiom systems can never prove their own consistency. Since any such axiom system would contain the finitary arithmetic as a subsystem, Gödel's theorem implied that it would be impossible to prove the system's consistency relative to that (since it would then prove its own consistency, which Gödel had shown was impossible). Thus, in order to show that any axiomatic system of mathematics is in fact consistent, one needs to first assume the consistency of a system of mathematics that is in a sense stronger than the system to be proven consistent.

Foundations of mathematics

Merely the use of formalism alone does not explain several issues: why we should use the axioms we do and not some others, why we should employ the logical rules we do and not some others, why do "true" mathematical statements (e.g., the laws of arithmetic) appear to be true, and so on. In some cases these may be sufficiently answered through the study of formal theories, in disciplines such as reverse mathematics and computational complexity theory. Formal logical systems also run the risk of inconsistency; in Peano arithmetic, this arguably has already been settled with several proofs of consistency, but there is debate over whether or not they are sufficiently finitary to be meaningful. Gödel's second incompleteness theorem establishes that logical systems of arithmetic can never contain a valid proof of their own consistency. What Hilbert wanted to do was prove a logical system S was consistent, based on principles P that only made up a small part of S. But Gödel proved that the principles P could not even prove P to be consistent, let alone S!

Various schools of thought on the right approach to the foundations of mathematics were fiercely opposing each other. The leading school was that of the formalist approach, of which David Hilbert was the foremost proponent, culminating in what is known as Hilbert's program, which thought to ground mathematics on a small basis of a logical system proved sound by metamathematical finitistic means. The main opponent was the intuitionist school, led by L. E. J. Brouwer, which resolutely discarded formalism as a meaningless game with symbols (van Dalen, 2008). The fight was acrimonious. In 1920 Hilbert succeeded in having Brouwer, whom he considered a threat to mathematics, removed from the editorial board of Mathematische Annalen, the leading mathematical journal of the time.

Gödel's incompleteness theorems, proved in 1931, showed that essential aspects of Hilbert's program could not be attained. In Gödel's first result he showed how to construct, for any sufficiently powerful and consistent recursively axiomatizable system – such as necessary to axiomatize the elementary theory of arithmetic on the (infinite) set of natural numbers – a statement that can be shown to be true, but that does not follow from the rules of the system. It thus became clear that the notion of mathematical truth can not be reduced to a purely formal system as envisaged in Hilbert's program. In a next result Gödel showed that such a system was not powerful enough for proving its own consistency, let alone that a simpler system could do the job. This dealt a final blow to the heart of Hilbert's program, the hope that consistency could be established by finitistic means (it was never made clear exactly what axioms were the "finitistic" ones, but whatever axiomatic system was being referred to, it was a 'weaker' system than the system whose consistency it was supposed to prove). Meanwhile, the intuitionistic school had not attracted many adherents among working mathematicians, due to difficulties of constructive mathematics.

In a sense, the crisis has not been resolved, but faded away: most mathematicians either do not work from axiomatic systems, or if they do, do not doubt the consistency of ZFC, generally their preferred axiomatic system. In most of mathematics as it is practiced, the various logical paradoxes never played a role anyway, and in those branches in which they do (such as logic and category theory), they may be avoided.

This absolute faith in mathematics is reflected in the crowning of the discipline as the "Queen of the Sciences", a title whose previous holder, significantly, was theology.