< User talk:Paul WormerRevision as of 11:20, 29 March 2010 by imported>Paul Wormer
PD Image Equation for plane.
Analytic geometry knows several closely related algebraic equations for a plane in three-dimensional Euclidean space. One such equation is illustrated in the figure. Point X is an arbitrary point in the plane and O (the origin) is outside the plane. The point A in the plane is chosen such that vector
![{\displaystyle {\overrightarrow {OA}}\equiv {\vec {\mathbf {a} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f262b0afd0fb15473fc75eefe0702b8193c31fd8)
is orthogonal to the plane. The vector
![{\displaystyle {\hat {\mathbf {n} }}\equiv {\frac {\vec {\mathbf {a} }}{a}}\quad {\hbox{with}}\quad a\equiv {|{\vec {\mathbf {a} }}|}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c031470a67ce838e782161f7b1417115e9831d76)
is a unit (length 1) vector normal (perpendicular) to the plane. The following relation holds for an arbitrary point in the plane
![{\displaystyle \left({\vec {\mathbf {r} }}-{\vec {\mathbf {a} }}\right)\cdot {\hat {\mathbf {n} }}=0\quad {\hbox{with}}\quad {\overrightarrow {OX}}\equiv {\vec {\mathbf {r} }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e9b70d1e6605b78563b8365852739a294bbfcc26)
Evidently a is the distance of O to the plane.
This equation for the plane can be rewritten in terms of coordinates with respect to a Cartesian frame with origin in O,
![{\displaystyle {\vec {\mathbf {r} }}\cdot {\hat {\mathbf {n} }}={\vec {\mathbf {a} }}\cdot {\hat {\mathbf {n} }}\Longrightarrow xa_{x}+ya_{y}+za_{z}=a}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6808c6b3354a7331f812be1e1f45d4c01ba4271b)
with
![{\displaystyle {\vec {\mathbf {a} }}=(a_{x},\;a_{y},\;a_{z}),\quad {\vec {\mathbf {r} }}=(x,\;y,\;z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e21d205c164a156fa4a8a6dc92a8d5e02e89fad)