Injective function

From Citizendium
Revision as of 14:40, 12 November 2008 by imported>Richard Pinch (added example class of strictly montonic functions)
Jump to navigation Jump to search

In mathematics, an injective function or one-to-one function or injection is a function which has different output values on different input values: f is injective if implies that .

An injective function f has a well-defined partial inverse . If y is an element of the image set of f, then there is at least one input x such that . If f is injective then this x is unique and we can define to be this unique value. We have for all x in the domain.

A strictly monotonic function is injective, since in this case implies that .

See also