Revision as of 14:15, 7 December 2008 by imported>Richard Pinch
In set theory, the characteristic function or indicator function of a subset A of a set X is the function, often denoted χA or IA, from X to the set {0,1} which takes the value 1 on elements of A and 0 otherwise.
We can express elementary set-theoretic operations in terms of characteristic functions:
- Empty set:
![{\displaystyle \chi _{\emptyset }=0;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b007f9b82a215dee6e9f789a6fb8ea44b3ed18bc)
- Intersection:
![{\displaystyle \chi _{A\cap B}=\min\{\chi _{A},\chi _{B}\}=\chi _{A}\cdot \chi _{B};\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/311ee83bf53a51086ca752dff2562ebd0ec4e807)
- Union:
![{\displaystyle \chi _{A\cup B}=\max\{\chi _{A},\chi _{B}\}=\chi _{A}+\chi _{B}-\chi _{A}\cdot \chi _{B};\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44e0cffc946511f7d2665a071f6999e9929912f3)
- Symmetric difference:
![{\displaystyle \chi _{A\bigtriangleup B}=\chi _{A}+\chi _{B}{\pmod {2}}.\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9918fe7069fe5edd1d57756bf0320c5d42f1762c)