Brain evolution/Bibliography
Jump to navigation
Jump to search
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
- Fitch, W. T. (2008), "Glossogeny and phylogeny: cultural evolution meets genetic evolution", Trends in Genetics 24 (8): 373–374, DOI:10.1016/j.tig.2008.05.003
- Sherwood, C.C.; Subiaul, F.; Zawidzki, T. (2008). "A natural history of the human mind: tracing evolutionary changes in brain and cognition". Journal of Anatomy 212 (4): 426-454. DOI:10.1111/j.1469-7580.2008.00868.x. Research Blogging.
- Vallender, E.J.; N. Mekel-Bobrov & B.T. Lahn (2008), "Genetic basis of human brain evolution", Trends in Neurosciences 31: 637, DOI:10.1016/j.tins.2008.08.010 [e]
- A brief and balanced overview over the genetic mechanisms currently deemed relevant for the evolution of the human brain, along with pointers to some related methodological issues.
- CZ:Ref:Vallender2008gbh/Comment1
- Emes, R.D.; Pocklington, A.J.; Anderson, C.N.G.; Bayes, A.; Collins, M.O.; Vickers, C.A.; Croning, M.D.R.; Malik, B.R.; Choudhary, J.S.; Armstrong, J.D.; Others, (2008). "Evolutionary expansion and anatomical specialization of synapse proteome complexity". Nature Neuroscience (6): pages to be defined. DOI:10.1038/nn.2135. Research Blogging.
- Tartarelli, G. & M. Bisconti (2007), "Trajectories and Constraints in Brain Evolution in Primates and Cetaceans", Human Evolution 21 (3): 275–287, DOI:10.1007/s11598-006-9027-4
- Jaaro, H. & M. Fainzilber (2006), "Building Complex Brains-Missing Pieces in an Evolutionary Puzzle", Brain Behav Evol 68 (3): 191–195, DOI:10.1159/000094088 [e]
- Shoshani, J.; W.J. Kupsky & G.H. Marchant (2006), "Elephant brain Part I: Gross morphology, functions, comparative anatomy, and evolution", Brain Research Bulletin 70 (2): 124–157, DOI:10.1016/j.brainresbull.2006.03.016
- Gomez, J.C. (2005), "Species comparative studies and cognitive development", Trends Cogn Sci 9 (3): 118–125, DOI:10.1016/j.tics.2005.01.004 [e]
- Carroll, S.B. (2005). "Evolution at two levels: on genes and form". PLoS Biol 3 (7): e245. DOI:10.1371/journal.pbio.0030245. Research Blogging.
- Jarvis, E.D.; Güntürkün, O.; Bruce, L.; Csillag, A.; Karten, H.; Kuenzel, W.; Medina, L.; Paxinos, G.; Perkel, D.J.; Shimizu, T.; Others, (2005). "Avian brains and a new understanding of vertebrate brain evolution". Nature Reviews Neuroscience 6: 151-159. DOI:10.1038/nrn1606. Research Blogging.
- Reiner, A. (2005). "A new avian brain nomenclature: Why, how and what". Brain Research Bulletin 66 (4-6): 317-331. DOI:10.1016/j.brainresbull.2005.05.007. Research Blogging.
- Roth, G.; Dicke, U. (2005). "Evolution of the brain and intelligence". Trends in Cognitive Sciences 9 (5): 250-257.
- Bush, E.C.; Allman, J.M. (2003), "The Scaling of White Matter to Gray Matter in Cerebellum and Neocortex", Brain Behav Evol 61 (1): 1–5, DOI:10.1159/000068880
- Harrison, K.H.; Hof, P.R.; Wang, S.S. (2002), "Scaling laws in the mammalian neocortex: Does form provide clues to function?", J Neurocytol 31 (3-5): 289–98, DOI:10.1023/A:1024178127195 [e]
- Menzel, R. & M. Giurfa (2001), "Cognitive architecture of a mini-brain: the honeybee", Trends in Cognitive Sciences 5 (2): 62–71, DOI:10.1016/S1364-6613(00)01601-6 [e]
- Clark, D.A.; P.P. Mitra & S.S. Wang (2001), "Scalable architecture in mammalian brains", Nature 411 (6834): 189–93, DOI:10.1038/35075564 [e]
"...among quantitative brain parameters examined to date, only the cerebrotype provides a measure of architecture that correlates with date of divergence of advanced primates."
- Changizi, M.A. (2001), "Principles underlying mammalian neocortical scaling", Biol Cybern 84 (3): 207–15, DOI:10.1007/s004220000205
- Supèr, H.; Uylings, H.B.M. (2001), "The Early Differentiation of the Neocortex: a Hypothesis on Neocortical Evolution", Cerebral Cortex 11 (12): 1101–1109, DOI:10.1093/cercor/11.12.1101
- Katz, P.S. & R.M. Harris-Warrick (1999), "The evolution of neuronal circuits underlying species-specific behavior", Current Opinion in Neurobiology 9 (5): 628–633, DOI:10.1016/S0959-4388(99)00012-4 [e]
- Kornack, David R. & Pasko Rakic (1998), "Changes in cell-cycle kinetics during the development and evolution of primate neocortex", Proceedings of the National Academy of Sciences of the United States of America 95 (3): 1242–1246, DOI:10.1073/pnas.95.3.1242 [e]
In comparison to rodents, "...substantially more total rounds of cell division elapsed during the prolonged neurogenetic period of the monkey cortex, providing a basis for increased cell production."