Étale morphism
The Weil Conjectures
Definition
The following conditions are equivalent for a morphism of schemes :
- is flat and unramified.
- is flat and the sheaf of Kähler differentials is zero; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_{X/Y}=0} .
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is smooth of relative dimension 0.
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is said to be étale when this is the case.
The small étale site
The category of étale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} -schemes becomes a Grothendieck topology, if one defines the sets of coverings to be jointly-surjective collections of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} -morphisms ; i.e., such that the union of images covers . That this forms a grothendieck essentially follows from the following three facts:
- Open immersions are étale.
- The étale property lifts by base change: that is, if is an étale morphism, and is any morphism, then the canonical fibered projection is again étale.
- If and are such that is étale, then is étale as well.
Étale cohomology
One begins by defining a presheaf to be a contravariant functor from the underlying category of a small étale site into an abelian category . A sheaf on is then
Applications
Deligne proved the Weil-Riemann hypothesis using étale cohomology.