Function (mathematics)

From Citizendium
Revision as of 13:39, 7 November 2010 by imported>Boris Tsirelson (history (non-finished))
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The mathematical concept of a function (also called a mapping or map) expresses dependence between two quantities, one of which is given (the independent variable, argument of the function, or its "input") and the other (the dependent variable, value of the function, or "output") is uniquely defined by the input.

A function associates a single output with every input element drawn from a fixed set, the domain of definition or simply domain. The set in which values may be taken is the codomain. The set of all resulting output values that actually occur is called the range or image of the function: the image is a subset of the codomain, but need not be the whole of it.

One important concept in mathematics is function composition: if z is a function of y and y is a function of x, then z is a function of x. This can be described informally by saying that the composite function is obtained by using the output of the first function as the input of the second one. This feature of functions distinguishes them from other mathematical constructs, such as numbers or figures.

In most mathematical fields, the terms operator, operation, and transformation are synonymous with function. However, in some contexts they may have a more specialized meaning. In particular, they often apply to functions whose inputs and outputs are elements of the same set. For example, we speak of linear operators on a vector space, which are linear transformations from the vector space into itself.

History

Birth and infancy of the idea

Some tables compiled by ancient Babylonians may be treated now as tables of some functions. Also, some arguments of ancient Greeks may be treated now as integration of some functions. Thus, in ancient times some functions were used (implicitly). However, they were not recognized as special cases of a general notion.

Further progress was made in the 14th century. Two "schools of natural philosophy", at Oxford (William Heytesbury, Richard Swineshead) and Paris (Nicole Oresme), trying to investigate natural phenomena mathematically, came to the idea that laws of nature should be formulated as functional relations between physical quantities. The concept of function was born, including a curve as a graph of a function of one variable, and a surface — for two variables. However, the new concept was not yet widely exploited either in mathematics or in its applications. Linear functions were well understood, but nonlinear functions remained intractable, except for few isolated marginal cases.

The name "function" was assigned to the new concept later, in 1698, by Johann Bernoulli and Gottfried Leibniz, and published by Bernoulli in 1718.

Power series

The sum of the geometric series

was calculated by Archimedes, but only for x=1/4, since only this value was needed, and of course not written in this form, since algebraic notation appeared only in the 16th century. New wonderful formulas with infinite sums were discovered (and repeatedly rediscovered) in the 14–17 centuries: for arctangent,

(Madhava of Sangamagramma, around 1400; James Gregory, 1671); for logarithm,

(Nicholas Mercator, 1668); and many others (Isaac Barrow, Isaac Newton, Gottfried Leibniz, ...) Nonlinear functions, desperately needed for the study of motion (Johannes Kepler, Galileo Galilei) and geometry (Pierre Fermat, René Descartes), became tractable via such infinite sums now called power series.

Newton understood by analysis the investigation of equations by means of infinite series. In other words, Newton's basic discovery was that everything had to be expanded in infinite series.(Arnold, page 35)

These studies [on power series] stand in the same relation to algebra as the studies of decimal fractions to ordinary arithmetic. (Newton)

Power series became a de facto standard of function, since on one hand, all functions needed in applications were successfully developed into power series, and on the other hand, only functions developed into power series were tractable in the theory. It was not unusual, to claim a theorem for an arbitrary function, and then, in the proof, to consider its development into a power series.

Trigonometric series

Sets of pairs

Special classes of function

  • An injective function f has the property that if then ;
  • A surjective function f has the property that for every y in the codomain there exists an x in the domain such that ;
  • A bijective function is one which is both surjective and injective.

Functions in set theory

In set theory, functions are regarded as a special class of relation. A relation between sets X and Y is a subset of the Cartesian product, . We say that a relation R is functional if it satisfies the condition that every occurs in exactly one pair . In this case R defines a function with domain X and codomain Y. We then define the value of the function at x to be that unique y. We thus identify a function with its graph.

Associated sets

Let f:XY be a function with domain X and codomain Y. The image of a subset A of X is ; the image of f is the image of X under f. The pre-image of a subset B of Y is . The fibre of f over a point y in Y is the preimage of the singleton {y}. The kernel of f is the equivalence relation on X for which the equivalence classes are the fibres of f.

Associated functions

If f is a function from a set X to a set Y, there are several functions associated with f.

If S is a subset of X, the restriction of f to S is the function from S to Y which is given by applying f only to elements of S. The restriction may have different properties to the original. Consider the function from the real numbers R to R. The restriction of f to the positive real numbers is injective, whereas f is not.

The push-forward of f is the function from the power set of X to that of Y which maps a subset A of X to its image in Y:

An alternative notation for is (note the square brackets).

The pull-back of f is the function from the power set of Y to the power set of X which maps a subset B of Y to its pre-image in X:

An alternative notation for is (note the square brackets). Pull-back is a generalised form of inverse, and makes sense whether or not f is an invertible function.