Derivative at a point
In mathematics, the derivative of a function is a measure of how rapidly the function changes locally when its argument changes.
Formally, the derivative of the function f at a is the limit
of the difference quotient as h approaches zero, if this limit exists. If the limit exists, then f is differentiable at a.
Multivariable calculus
The extension of the concept of derivative to multivariable functions, or vector-valued functions of vector variables, may be achieved by considering the derivative as a linear approximation to a differentiable function. In the one variable case we can regard as a linear function of one variable which is a close approximation to the function at the point .
Let be a function of n variables. We say that F is differentiable at a point if there is a linear function such that
where denotes the Euclidean distance in .
The derivative , if it exists, is a linear map and hence may be represented by a matrix. The entries in the matrix are the partial derivatives of the component functions of Fj with respect to the coordinates xi. If F is differentiable at a point then the partial derivatives all exist at that point, but the converse does not hold in general.