Revision as of 20:29, 29 November 2007 by imported>Karsten Meyer
In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:
![{\displaystyle F_{n}:={\begin{cases}0&{\mbox{if }}n=0;\\1&{\mbox{if }}n=1;\\F_{n-1}+F_{n-2}&{\mbox{if }}n>1.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00008893a71eebbf4e7d89a0c162fe6359f5ac8c)
The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Fibonacci numbers and the rabbits
The sequence of fibonacci numbers was first used, to repesent the growth of a colony of rabbits, starting with one pair of rabbits.
Properties
- The quotient of two consecutive fibonacci numbers converges to the golden ratio:
![{\displaystyle \lim _{n\to \infty }{\frac {F(n+1)}{F(n)}}=\varphi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2ee248e8378a82e80ec8bc406a2a5ae317844c)
- If
divides
then
divides ![{\displaystyle \scriptstyle F_{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbcd00dc9c3d5128a5d84dbc3f6abf897b15145f)
- If
is a prime number, then is
also a prime number.
![{\displaystyle \operatorname {gcd} (f_{m},f_{n})=f_{\operatorname {gcd} (m,n)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9565080ec429808727ac0d7556ca74f27e8ff2b9)
![{\displaystyle F_{0}^{2}+F_{1}^{2}+F_{2}^{2}+...+F_{n}^{2}=\sum _{i=0}^{n}F_{i}^{2}=F_{n}\cdot F_{n+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/017ecc54092a14336915b81db4ac0dcb338fcc7c)
Further reading