Random variable

From Citizendium
Revision as of 05:00, 17 October 2007 by imported>Hendra I. Nurdin (new article)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In probability theory, a branch of mathematics, a random variable is, as its name suggests, a variable that can take on random values. More formally, it is not actually a variable , but a function whose argument takes on a particular value according to some probability measure (a measure that takes on the value 1 over the largest set on which it is defined).

Formal definition

Let be an arbitrary probability space and an arbitrary measurable space. Then a random variable is any measurable function X mapping to .

An easy example

Consider the probability space where is the sigma algebra of Borel subsets of and P is a probability measure on (hence P is measure with ). Then the identity map defined by is trivially a measurable function, hence is a random variable.

References

  1. P. Billingsley, Probability and Measure (2 ed.), ser. Wiley Series in Probability and Mathematical Statistics, Wiley, 1986.
  2. D. Williams, Probability with Martingales, Cambridge : Cambridge University Press, 1991.

External links

  1. Probability tutorial at Probability.net