Bessel functions
Bessel functions are solutions of the Bessel differential equation:[1][2][3]
where α is a constant.
Because this is a second-order differential equation, it should have two linearly-independent solutions:
(i) Jα(x) and
(ii) Yα(x).
In addition, a linear combination of these solutions is also a solution:
(iii) Hα(x) = C1 Jα(x) + C2 Yα(x)
where C1 and C2 are constants.
These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.
Properties
Many properties of functions $J$, $Y$ and $H$ are collected at the handbook by Abramowitz, Stegun [4].
Integral representations
Expansions at small argument
The series converges in the whole complex $z$ plane, but fails at negative integer values of . The postfix form of factorial is used above; .
Applications
Bessel functions arise in many applications. For example, Kepler’s Equation of Elliptical Motion, the vibrations of a membrane, and heat conduction, to name a few. In paraxial optics the Bessel functions are used to describe solutions with circular symmetry.
References
- ↑ Frank Bowman (1958). Introduction to Bessel Functions, 1st Edition. Dover Publications. ISBN 0-486-60462-4.
- ↑ George Neville Watson (1966). A Treatise on the Theory of Bessel Functions, 2nd Edition. Cambridge University Press.
- ↑ Bessel Function of the First Kind Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".
- ↑ http://people.math.sfu.ca/~cbm/aands/page_358.htm M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.