Revision as of 18:00, 9 January 2010 by imported>Peter Schmitt
A geometric series is a series associated with an infinite geometric sequence,
i.e., the quotient q of two consecutive terms is the same for each pair.
A geometric series converges if and only if −1<q<1.
Its sum is where a is the first term of series.
Power series
Any geometric series
can be written as
where
The partial sums of the power series are
The infinite geometric series converges when |x| < 1, because in that case xk tends to zero for and hence
The geometric series diverges for |x| ≥ 1.