User:Dmitrii Kouznetsov/loginal

From Citizendium
< User:Dmitrii Kouznetsov
Revision as of 17:00, 25 May 2008 by imported>Dmitrii Kouznetsov (→‎Exponentiation)
Jump to navigation Jump to search

Template:Under construction; Name of article is temporal. Loginal of function at some space S is function such tat

(1) for all

Loginal allow the solution of equation

(2)

in form

(3)

Loginal should be invertable

(4)

Then, at the substitution to the initial equation (1)

(5)
(6)

Special cases

Summation

In particular, if means addition a constant , id est, , then

(7)

means that </math>

Multiplication

If means multiplication by a constant , id est, , then

(8)

means that and .

Exponentiation

For exponentiation, is tetration,

(11) ;

or

In particular, I can extract the square root of exponential, id est, to find finction such that

(12)

The calculation is straightforward:

(13)

Checkback:

(14)
(15)
(16)

In general case, finding of loginal of a heneral function is not trivial.

References

(needs to be cleaned up)

  • A. Smith. Is there any way to approximate the solution of ?

Argonne National Laboratory, Division of Educational Programs. www.newton.dep.anl.gov/newton/askasci/1993/math/MATH023.HTM

  • I.N. Baker, The iteration of entire transcendental functions and the solution of the functional equation f(f(z) = F(z). Math. Ann. 129 (1955), 174-180
  • M. Bajraktarevic, Solution générale de l'équation fonctionelle . Publ. Inst. Math. Beograd (N.S.) 5(19) (1965), 115-124
  • P. Erdös & E. Jabotinsky, On Analytic Iteration. J. Analyse Math. 8 (1960/61), 361-376
  • G.M. Ewing & W.R. Utz, Continuous solutions of . Can. J. Math. 5 (1953), 101-103
  • R. Isaacs, Iterates of fractional order. Canad. J. Math. 2 (1950), 409-416.
  • R. Isaacs, On Fractional Iteration. Technical Report No. 320, Department of Mathematical Sciences, The John Hopkins University, November 1979
  • E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc. 108 (1963), 457-477
  • W. Jarczyk, A recurrent method of solving iterative functional equations. Prace Nauk. Uniw. Slask. Katowic. 1206 (1991)
  • L. Kindermann, An Addition to Backpropagation for Computing Functional Roots. Proc. Int'l ICSC/IFAC Symp. on Neural Computation - NC'98, Vienna (1998), 424-427
  • B. Gawel, On the uniqueness of continuous solutions of functional equations. Ann. Polon. Math. LX.3 (1995), 231-239
  • H. Kneser, Reelle analytische Lösungen der Gleichung und verwandter Funktionalgleichungen. J. reine angew. Math. 187 (1950), 56-67
  • J. Kobza, Iterative functional equation with piecewise linear. Journal of Computational and Applied Mathematics 115 (2000), 331-347
  • M. Kuczma, On the functional equation . Ann. Polon. Math. 11 (1961) 161-175
  • J.C.Lillo, The functional equation . Arkiv för Mat. 5 (1965), 357-361
  • J.C.Lillo, The functional equation . Ann. Polon. Math. 19 (1967), 123-135

L.S.O. Liverpool, Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. 41 (1979) | Homepage

  • S. Lojasiewicz, Solotion générale de l'équation fonctionelle . Annales de la Societé Plonaise de Mathematique 24 (1951), 88-91
  • J.L. Massera & A. Petracca, On the functional equation . Revista Union Mat. Argentinia 11 (1946), 206-211
  • P.B. Miltersen, N.V Vinodchandran, O. Watanabe, Super-polynomial versus half-exponential circuit size in the exponential hierarchy. Research Report c-130, 1999. Dept. of Math and Comput. Sc., Tokyo Inst. of Tech.; also: BRICS Report Series RS-99-4, Dept. of Computer Science, Univ. Aarhus, 1999
  • R.E. Rice, Fractional iterates. PhD Thesis, University of Massachusetts, Amherest (1977)
  • R.E. Rice, Iterative square roots of Cebysev polynomials. Stochastica 3 (1979), 1-14
  • R.E. Rice, B. Schweizer & A. Sklar, When is for all complex Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z<math>? Amer. Math. Monthly 87 (1980), 252-263 * M.C. Zdun, Differentiable fractional iteration. Bull. Acad. Sci. Polon. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646 *Weinian Zhang, Discussion on iterated equation <math>\sum_{i=1}^n f^i(x)=F(x)} Chin. Sci. Bul. (Kexue Tongbao), 32 (1987), 21: 1444-1451
  • Weinian Zhang, A generic property of globally smooth iterative roots. Scientia Sinica A, 38 (1995), 267-272
  • Weinian Zhang, PM functions, their characteristic intervals and iterative roots. Annales Polonici Mathematici, LXV.2 (1997), 119-128
  • Weinian Zhang, Discussion on the differentiable solutions of the iterated equation . Nonlinear Analysis, 15 (1990), 4: 387-398
  • P. Walker, Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of Computation 57 (1991), 723-733