Revision as of 04:52, 23 January 2008 by imported>Paul Wormer
Two dimensional polar coordinates
r and θ of vector
![{\displaystyle \scriptstyle {\vec {\mathbf {r} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1081b6f98d85b395dc1ce8d31f5c0494f8e866d6)
In mathematics and physics, polar coordinates give the position of a vector
in two-dimensional real space
. A Cartesian system of two orthogonal axes is presupposed. One number (r) gives the length of the vector and the other number (θ) gives the angle of the vector with the x-axis of the Cartesian system (measured in the direction of the positive y-axis).
Definition
The polar coordinates are related to the Cartesian coordinates x and y through
![{\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\x&=r\cos \theta \\y&=r\sin \theta ,\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3053da10ff1c81b1f12326f55e3d4f06c04c4b0a)
so that for r ≠ 0,
![{\displaystyle \theta ={\begin{cases}\arccos(x/r)&{\hbox{ if }}y\geq 0\\360^{0}-\arccos(x/r)&{\hbox{ if }}y<0.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1306b16a40e0fa397f9a16b42eb4e8fc41b2071e)