Revision as of 07:55, 29 December 2007 by imported>Aleksander Stos
In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:
![{\displaystyle F_{n}:={\begin{cases}0&{\mbox{if }}n=0;\\1&{\mbox{if }}n=1;\\F_{n-1}+F_{n-2}&{\mbox{if }}n>1.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00008893a71eebbf4e7d89a0c162fe6359f5ac8c)
The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Properties
- The quotient of two consecutive fibonacci numbers converges to the golden ratio:
![{\displaystyle \lim _{n\to \infty }{\frac {F(n+1)}{F(n)}}=\varphi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2ee248e8378a82e80ec8bc406a2a5ae317844c)
- If
divides
then
divides ![{\displaystyle \scriptstyle F_{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbcd00dc9c3d5128a5d84dbc3f6abf897b15145f)
- If
and
is a prime number then
is prime. (The converse is false.)
![{\displaystyle \operatorname {gcd} (f_{m},f_{n})=f_{\operatorname {gcd} (m,n)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9565080ec429808727ac0d7556ca74f27e8ff2b9)
![{\displaystyle F_{0}^{2}+F_{1}^{2}+F_{2}^{2}+...+F_{n}^{2}=\sum _{i=0}^{n}F_{i}^{2}=F_{n}\cdot F_{n+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/017ecc54092a14336915b81db4ac0dcb338fcc7c)
Direct formula
Let
and
. Let
![{\displaystyle f_{n}\ :=\ {\frac {1}{\sqrt {5}}}\cdot (A^{n}-a^{n})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdacf5074f5560a0aa14ef534782b08de4f8011)
Then:
and ![{\displaystyle \ f_{1}=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c754577bc3a87fedb269c17aa0a4afd510954174)
hence ![{\displaystyle \ A^{n+2}=A^{n+1}+A^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d6a827b03e84581e3473bf1e4b87934f3fe79e)
hence ![{\displaystyle a^{n+2}=a^{n+1}+a^{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c521491bf1e404a03afaede928e51d6bc7890dfc)
![{\displaystyle f_{n+2}\ =\ f_{n+1}+f_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b9a2928ddeaa5a041ae0e96cf0ae8bf57d987dc)
for every
. Thus
for every
, i.e.
![{\displaystyle F_{n}\ =\ {\frac {1}{\sqrt {5}}}\cdot \left(\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a91a8b5d28fd30b9fe698327c3483f77be546519)
for every
. Furthermore:
![{\displaystyle A\cdot a=-1\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e67289e80bb0012bf18aa45e39153cd61d4553)
![{\displaystyle A>1\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd1c3643c485dcaca05621ea6056995752259f2)
![{\displaystyle -1<a<0\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ed51d0637826bf787277dfbab290b1edc0ece29)
![{\displaystyle {\frac {1}{2}}\ >\ \left|{\frac {1}{\sqrt {5}}}\cdot a^{n}\right|\quad \rightarrow \quad 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b44c516a34da87eb8a4ff4b72d49472efbbb21)
It follows that
is the nearest integer to ![{\displaystyle {\frac {1}{\sqrt {5}}}\cdot \left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07bfffce67fac19c1ffa5ee311cdc6d400c2e587)
for every
. It follows that
; thus the value of the golden ratio is
.
Further reading
Applications
The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with one pair of rabbits.