Talk:Algebraic number

From Citizendium
Revision as of 09:54, 24 September 2007 by imported>Subpagination Bot (Add {{subpages}} and remove checklist (details))
Jump to navigation Jump to search
This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Advanced [?]
 
To learn how to update the categories for this article, see here. To update categories, edit the metadata template.
 Definition A complex number that is a root of a polynomial with rational coefficients. [d] [e]
Checklist and Archives
 Workgroup category Mathematics [Categories OK]
 Talk Archive none  English language variant American English

things to add:

  • links to "rational number" and "polynomial"
  • a couple of examples - and put in the polynomial that sqrt(2) satisfies
  • mention that some, but not all, algebraic numbers can be expressed using radicals - mention and link Galois
  • the link to "countable" should probably point to a new page on cardinality
I think the link should be to Countable set. Andres Luure 03:09, 26 March 2007 (CDT)

characteristic?

In this sentence: "The algebraic numbers form a field; in fact, they are the smallest algebraically closed field with characteristic 0. " I don't know what "characteristic 0" means. Perhaps a definition or a link would be helpful. --Catherine Woodgold 21:23, 28 April 2007 (CDT)

Oh, sorry. if 1 + 1 = 0 the characteistic is said to be 2, if 1 + 1 + 1 = 0 the characteristic is said to be 3, and forth. If there is no n such that , we say the characteristic is 0. A field of positive characteristic need not be finite. Two examples are the algebraic closure of (usually written when the emphasis is on being a field). Another basic example is the field of rational functions in one variable, . Fields of positive characteristic are important in applications to number theory. Greg Woodhouse 22:04, 28 April 2007 (CDT)
Thanks. I added part of your explanation as a footnote. I suppose means the integers modulo 2, a field of 2 elements. Hard to imagine the algebraic closure of that. --Catherine Woodgold 11:11, 29 April 2007 (CDT)
Yeah, it's an infinite extension. Greg Woodhouse 11:20, 29 April 2007 (CDT)