File:Ack3a600.jpg: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
(generator)
Line 7: Line 7:
|notes        = I plan to use this image in the article
|notes        = I plan to use this image in the article
D.Kouznetsov. Holomorphic ackermann. 2015, in preparation.
D.Kouznetsov. Holomorphic ackermann. 2015, in preparation.
|versions    = The real-real plot of this function is one of curves at http://en.citizendium.org/wiki/File:Tetreal10bx10d.png
|versions    = http://mizugadro.mydns.jp/t/index.php/File:Ack3a600.jpg
The real-real plot of this function is one of curves at http://en.citizendium.org/wiki/File:Tetreal10bx10d.png
}}
}}
== Licensing ==
== Licensing ==
{{CC|by|3.0}}
{{CC|by|3.0}}
==[[C++]] generator of map==
Files
[[ado.cin]],
[[conto.cin]],
[[sqrt2f21e.cin]]
should be loaded to the working directory in order to compile the code below.
<nowiki>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
#define z_type std::complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "sqrt2f21e.cin"
#include "conto.cin"
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=601,M1=M+1;
int N=461,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1];
char v[M1*N1]; // v is working array
FILE *o;o=fopen("tetqma.eps","w");ado(o,602,202);
fprintf(o,"301 101 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-30.+.1*(m);
DO(n,200)Y[n]=-10.+.05*n;
        Y[200]=-.01;
        Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -30,n)L(30,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(n,N1){y=Y[n];
          for(m=295;m<305;m++)
          {x=X[m]; //printf("%5.2f\n",x);
          z=z_type(x,y);
          c=F21E(z);
          p=Re(c);q=Im(c);
          if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
          d=c;
          for(k=1;k<31;k++)
                { m1=m+k*10; if(m1>M) break;
                d=exp(d*(.5*log(2.)));
                p=Re(d);q=Im(d);
                if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
                }
          d=c;
          for(k=1;k<31;k++)
                { m1=m-k*10; if(m1<0) break;
                d=log(d)*(2./log(2.));
                p=Re(d);q=Im(d);
                if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
                }
        }}
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
                    conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf tetqma.eps");
system(  "open tetqma.pdf");
getchar(); system("killall Preview");
}
</nowiki>
==References==
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html<br>
http://www.ils.uec.ac.jp/~dima/PAPERS/2010q2.pdf<br>
http://mizugadro.mydns.jp/PAPERS/2010q2.pdf
D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br>
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br>
http://mizugadro.mydns.jp/BOOK/202.pdf
Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian)
D.Kouznetsov. Holomorphic [[ackermann]]s. 2015, in preparation.
[[Category:Complex map]]
[[Category:Superfunction]]
[[Category:Tetration]]

Revision as of 01:19, 1 September 2014

Summary

Title / Description


Complex map of tetration to base
Citizendium author
& Copyright holder


Copyright © Dmitrii Kouznetsov.
See below for licence/re-use information.
Date created


August 2014
Country of first publication


Japan
Notes


I plan to use this image in the article

D.Kouznetsov. Holomorphic ackermann. 2015, in preparation.

Other versions


http://mizugadro.mydns.jp/t/index.php/File:Ack3a600.jpg

The real-real plot of this function is one of curves at http://en.citizendium.org/wiki/File:Tetreal10bx10d.png

Using this image on CZ


Please click here to add the credit line, then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.

{{Image|Ack3a600.jpg|right|350px|Add image caption here.}}

Image issue? Contact us via the email below.

Please send email to manager A T citizendium.org .

Licensing

This media, Ack3a600.jpg, is licenced under the Creative Commons Attribution 3.0 Unported License

You are free: To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.

C++ generator of map

Files ado.cin, conto.cin, sqrt2f21e.cin should be loaded to the working directory in order to compile the code below.

#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> #define z_type std::complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "sqrt2f21e.cin" #include "conto.cin" int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; int M=601,M1=M+1; int N=461,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; char v[M1*N1]; // v is working array FILE *o;o=fopen("tetqma.eps","w");ado(o,602,202); fprintf(o,"301 101 translate\n 10 10 scale\n"); DO(m,M1)X[m]=-30.+.1*(m); DO(n,200)Y[n]=-10.+.05*n; Y[200]=-.01; Y[201]= .01; for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}} for(n=-10;n<11;n++){ M( -30,n)L(30,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(n,N1){y=Y[n]; for(m=295;m<305;m++) {x=X[m]; //printf("%5.2f\n",x); z=z_type(x,y); c=F21E(z); p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} d=c; for(k=1;k<31;k++) { m1=m+k*10; if(m1>M) break; d=exp(d*(.5*log(2.))); p=Re(d);q=Im(d); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} } d=c; for(k=1;k<31;k++) { m1=m-k*10; if(m1<0) break; d=log(d)*(2./log(2.)); p=Re(d);q=Im(d); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} } }} fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf tetqma.eps"); system( "open tetqma.pdf"); getchar(); system("killall Preview"); }

References

http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2010q2.pdf
http://mizugadro.mydns.jp/PAPERS/2010q2.pdf D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.

https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian)

D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:52, 11 March 2022Thumbnail for version as of 18:52, 11 March 20225,130 × 1,793 (1.09 MB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata