Cauchy-Riemann equations: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Daniele Tampieri
mNo edit summary
imported>Daniele Tampieri
(Extended the historical section and added a reference.)
Line 1: Line 1:
{{subpages}}
{{subpages}}


In [[complex analysis]], the '''Cauchy-Riemann equations''' are one of the of the basic objects of the theory: they are a system of <math>\scriptstyle 2n</math> [[partial differential equation]]s, where <math>\scriptstyle n</math> is the [[Dimension (vector space)|dimension]] of the [[Complex space|complex ambient space]] ℂ''<sup>n</sup>'' considered. Precisely, their [[Homogeneous equation|homogeneous form]] express a necessary and sufficient condition between the [[Real part|real]] and [[imaginary part]] of a [[Complex number|complex valued]] function of <math>\scriptstyle 2n</math> [[real number|real]] [[variable]]s for the given function to be a [[Holomorphic function|holomorphic one]]. They are named after [[Augustin-Louis Cauchy]] and [[Bernhard Riemann]] who were the first ones to study and use such equations as a mathematical object "per se", creating a new theory. These equations are sometimes referred as '''Cauchy-Riemann conditions''' or '''Cauchy-Riemann system''': the [[partial differential operator]] appearing on the left side of these equations is usually called the '''Cauchy-Riemann operator'''.
In [[complex analysis]], the '''Cauchy-Riemann equations''' are one of the of the basic objects of the theory: they are a system of <var>2n</var> [[partial differential equation]]s, where <var>n</var> is the [[Dimension (vector space)|dimension]] of the [[Complex space|complex ambient space]] ℂ''<sup>n</sup>'' considered. Precisely, their [[Homogeneous equation|homogeneous form]] express a necessary and sufficient condition between the [[Real part|real]] and [[imaginary part]] of a [[Complex number|complex valued]] function of <var>2n</var> [[real number|real]] [[variable]]s for the given function to be a [[Holomorphic function|holomorphic one]]. They are named after [[Augustin-Louis Cauchy]] and [[Bernhard Riemann]] who were the first ones to study and use such equations as a mathematical object "per se", creating a new theory. These equations are sometimes referred as '''Cauchy-Riemann conditions''' or '''Cauchy-Riemann system''': the [[partial differential operator]] appearing on the left side of these equations is usually called the '''Cauchy-Riemann operator'''.


== Historical note ==
== Historical note ==
The  
The first introduction and use of the Cauchy-Riemann equations for <var>n</var>=1 is due to [[Jean Le-Rond D'Alembert]] in his 1752 work on [[hydrodynamics]]: this connection between [[complex analysis]] and [[hydrodynamics]] is made explicit in classical [[treatise]]s of the latter subject, such as [[Horace Lamb]]'s monumenthal work.


== Formal definition ==
== Formal definition ==
Line 61: Line 61:
   | volume =  Band 64
   | volume =  Band 64
   | edition =  
   | edition =  
| pages = 570
  | pages = 570
   | url =  
   | url =  
   | doi =  
   | doi =  
   | id =  
   | id =  
   | isbn =  
   | isbn = 3-7643-0989-X
}}.
}}.
*{{Citation
*{{Citation

Revision as of 12:59, 6 February 2011

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In complex analysis, the Cauchy-Riemann equations are one of the of the basic objects of the theory: they are a system of 2n partial differential equations, where n is the dimension of the complex ambient spacen considered. Precisely, their homogeneous form express a necessary and sufficient condition between the real and imaginary part of a complex valued function of 2n real variables for the given function to be a holomorphic one. They are named after Augustin-Louis Cauchy and Bernhard Riemann who were the first ones to study and use such equations as a mathematical object "per se", creating a new theory. These equations are sometimes referred as Cauchy-Riemann conditions or Cauchy-Riemann system: the partial differential operator appearing on the left side of these equations is usually called the Cauchy-Riemann operator.

Historical note

The first introduction and use of the Cauchy-Riemann equations for n=1 is due to Jean Le-Rond D'Alembert in his 1752 work on hydrodynamics: this connection between complex analysis and hydrodynamics is made explicit in classical treatises of the latter subject, such as Horace Lamb's monumenthal work.

Formal definition

In the following text, it is assumed that ℂn≡ℝ2n, identifying the points of the euclidean spaces on the complex and real fields as follows

The subscript is omitted when n=1.

The Cauchy-Riemann equations in ℂ (n=1)

Let f(x, y) = u(x, y) + iv(x, y) a complex valued differentiable function. Then f satisfies the homogeneous Cauchy-Riemann equations if and only if

Using Wirtinger derivatives these equation can be written in the following more compact form:

The Cauchy-Riemann equations in ℂn (n>1)

Let f(x1, y1,...,xn, yn) = u(x1, y1,...,xn, yn) + iv(x1, y1,...,xn, yn) a complex valued differentiable function. Then f satisfies the homogeneous Cauchy-Riemann equations if and only if

Again, using Wirtinger derivatives this system of equation can be written in the following more compact form:

Notations for the case n>1

In the French, Italian and Russian literature on the subject, the multi-dimensional Cauchy-Riemann system is often identified with the following notation:

The Anglo-Saxon literature (English and North American) uses the same symbol for the complex differential form related to the same operator.

References

  • Burckel, Robert B. (1979), An Introduction to Classical Complex Analysis. Vol. 1, Lehrbucher und Monographien aus dem Gebiete der exakten Wissenschaften. Mathematische Reihe, vol. Band 64, Basel–Stuttgart–New York–Tokyo: Birkhäuser Verlag, ISBN 3-7643-0989-X, at 570 [e].
  • Hörmander, Lars (1990), An Introduction to Complex Analysis in Several Variables, North–Holland Mathematical Library, vol. 7 (3rd (Revised) ed.), Amsterdam–London–New York–Tokyo: North-Holland, Zbl 0685.32001, ISBN 0-444-88446-7 [e].