Laplacian: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Gemma E. Mason
m (turned "spherical coordinates" and "cylindrical coordinates" into links)
imported>Gemma E. Mason
m (also linked to 'Cartesian coordinates')
Line 1: Line 1:
The Laplacian is a differential operator of the form<br />
The Laplacian is a differential operator of the form<br />
<math>\sum_{i}\frac{\partial^{2}}{\partial x_{i}^{2}}</math><br />
<math>\sum_{i}\frac{\partial^{2}}{\partial x_{i}^{2}}</math><br />
where <math>x_{i}</math> are Cartesian (that is, rectangular) co-ordinates.  The Laplacian is usually denoted by the symbol <math>\Delta</math> or written as the gradient squared <math>\nabla^{2}</math>.
where <math>x_{i}</math> are [[Cartesian coordinates]].  The Laplacian is usually denoted by the symbol <math>\Delta</math> or written as the gradient squared <math>\nabla^{2}</math>.


In [[cylindrical coordinates]], the Laplacian takes the form<br />
In [[cylindrical coordinates]], the Laplacian takes the form<br />

Revision as of 00:15, 3 September 2010

The Laplacian is a differential operator of the form

where are Cartesian coordinates. The Laplacian is usually denoted by the symbol or written as the gradient squared .

In cylindrical coordinates, the Laplacian takes the form

In spherical coordinates, the Laplacian is