Legendre polynomials/Catalogs: Difference between revisions
Jump to navigation
Jump to search
imported>Paul Wormer (New page: {{subpages}} :<math> \begin{align} P_0(x) &= 1 \\ P_1(x) &= x \\ P_2(x) &= \tfrac{1}{2}(3x^2-1)\\ P_3(x) &= \tfrac{1}{2}(5x^3 -3x)\\ P_4(x) &= \tfrac{1}{8}(...) |
imported>Paul Wormer No edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
The first twelve Legendre polynomials are: | |||
:<math> | :<math> | ||
Line 14: | Line 15: | ||
P_9(x) &= \tfrac{1}{128}(12155x^9- 25740x^7 + 18018x^5 -4620x^3 + 315x)\\ | P_9(x) &= \tfrac{1}{128}(12155x^9- 25740x^7 + 18018x^5 -4620x^3 + 315x)\\ | ||
P_{10}(x) &= \tfrac{1}{256}(46189 x^{10}- 109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63 )\\ | P_{10}(x) &= \tfrac{1}{256}(46189 x^{10}- 109395x^8 + 90090x^6 - 30030x^4 + 3465x^2 - 63 )\\ | ||
P_{11}(x) &= \tfrac{1}{256}( 88179x^{11}- 230945x^9 + 218790x^7 - 90090x^5 + 15015x^3 - 693x )\\ | |||
\end{align} | \end{align} | ||
</math> | </math> |
Latest revision as of 06:04, 9 September 2009
The first twelve Legendre polynomials are: