Action spectrum: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Thomas Simmons
(New page: The action spectrum is the spectrum of light which correlates to biological activity. For example, in 1881, Thomas W.. Engelmann learned that the green algae spirogyra undergoes photosynth...)
 
imported>Chris Day
No edit summary
Line 1: Line 1:
{{subpages}}
The action spectrum is the spectrum of light which correlates to biological activity. For example, in 1881, Thomas W.. Engelmann learned that the green algae spirogyra undergoes photosynthesis most effectively when exposed to red and blue light.<ref>[http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/ActionSpectrum.html Action and Absorption Spectra]  J. Kimball, (2001) Biology Pages</ref> Melatonin suppression, a physiological activity involved in the  regulation of the pineal gland, is another example of an action spectrum. Light suppression of melatonin secretion takes place at specific wavelengths.<ref>Brainerd GC, Hanifin JP, Greeson, JM, Byrne B, Glickman G, Gerner E, Rollaq MD (2001) Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. Journal of Neuroscience, August 15; 21(16):6405-6412.; [http://jp.physoc.org/cgi/content/full/535/1/261 An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans] Thapan K, Arendt J, Skene DJ (2001) Journal of Physiology, August 15 Volume 535, Number 1, 261-267. </ref>
The action spectrum is the spectrum of light which correlates to biological activity. For example, in 1881, Thomas W.. Engelmann learned that the green algae spirogyra undergoes photosynthesis most effectively when exposed to red and blue light.<ref>[http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/ActionSpectrum.html Action and Absorption Spectra]  J. Kimball, (2001) Biology Pages</ref> Melatonin suppression, a physiological activity involved in the  regulation of the pineal gland, is another example of an action spectrum. Light suppression of melatonin secretion takes place at specific wavelengths.<ref>Brainerd GC, Hanifin JP, Greeson, JM, Byrne B, Glickman G, Gerner E, Rollaq MD (2001) Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. Journal of Neuroscience, August 15; 21(16):6405-6412.; [http://jp.physoc.org/cgi/content/full/535/1/261 An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans] Thapan K, Arendt J, Skene DJ (2001) Journal of Physiology, August 15 Volume 535, Number 1, 261-267. </ref>


Line 10: Line 11:
<references />
<references />
</div>
</div>
[[Category: CZ Live|CZ Live]]
[[Category: Biology Workgroup|Biology Workgroup]]

Revision as of 01:04, 28 February 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The action spectrum is the spectrum of light which correlates to biological activity. For example, in 1881, Thomas W.. Engelmann learned that the green algae spirogyra undergoes photosynthesis most effectively when exposed to red and blue light.[1] Melatonin suppression, a physiological activity involved in the regulation of the pineal gland, is another example of an action spectrum. Light suppression of melatonin secretion takes place at specific wavelengths.[2]

Template:TOC-right

[edit intro]

Double column

References

  1. Action and Absorption Spectra J. Kimball, (2001) Biology Pages
  2. Brainerd GC, Hanifin JP, Greeson, JM, Byrne B, Glickman G, Gerner E, Rollaq MD (2001) Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. Journal of Neuroscience, August 15; 21(16):6405-6412.; An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans Thapan K, Arendt J, Skene DJ (2001) Journal of Physiology, August 15 Volume 535, Number 1, 261-267.