Field extension: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(added ref McCarthy, Stewart)
imported>Richard Pinch
(section and anchor Algebraic extension)
Line 9: Line 9:
:<math>[K:F] = [K:E] \cdot [E:F] \,</math>
:<math>[K:F] = [K:E] \cdot [E:F] \,</math>


==Algebraic extension==
An element of an extension field ''E''/''F'' is ''algebraic'' over ''F'' if it satisfies a [[polynomial]] with coefficients in ''F'', and ''transcendental'' over ''F'' if it is not algebraic.  An extension is ''algebraic'' if every element of ''E'' is algebraic over ''F''.  An extension of finite degree is algebraic, but the converse need not hold.  For example, the field of all [[algebraic number]]s over '''Q''' is an algebraic extension but not of finite degree.
An element of an extension field ''E''/''F'' is ''algebraic'' over ''F'' if it satisfies a [[polynomial]] with coefficients in ''F'', and ''transcendental'' over ''F'' if it is not algebraic.  An extension is ''algebraic'' if every element of ''E'' is algebraic over ''F''.  An extension of finite degree is algebraic, but the converse need not hold.  For example, the field of all [[algebraic number]]s over '''Q''' is an algebraic extension but not of finite degree.



Revision as of 10:53, 22 December 2008

In mathematics, a field extension of a field F is a field E such that F is a subfield of E. We say that E/F is an extension, or that E is an extension field of F.

Foe example, the field of complex numbers C is an extension of the field of real numbers R.

If E/F is an extension then E is a vector space over F. The degree or index of the field extension [E:F] is the dimension of E as an F-vector space. The extension C/R has degree 2. An extension of degree 2 is quadratic.

The tower law for extensions states that if K/E is another extension, then

Algebraic extension

An element of an extension field E/F is algebraic over F if it satisfies a polynomial with coefficients in F, and transcendental over F if it is not algebraic. An extension is algebraic if every element of E is algebraic over F. An extension of finite degree is algebraic, but the converse need not hold. For example, the field of all algebraic numbers over Q is an algebraic extension but not of finite degree.

Separable extension

An element of an extension field is separable over F if it is algebraic and its minimal polynomial over F has distinct roots. Every algebraic element is separable over a field of characteristic zero. An extension is separable if all its elements are. A field is perfect if all finite degree extensions are separable. For example, a finite field is perfect.

Simple extension

A simple extension is one which is generated by a single element, say a, and a generating element is a primitive element. The extension F(a) is formed by the polynomial ring F[a] if a is algebraic, otherwise it is the rational function field F(a).

The theorem of the primitive element states that a finite degree extension E/F is simple if and only if there are only finitely many intermediate fields between E and F; as a consequence, every finite degree separable extension is simple.

References