Injective function: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (added example class of strictly montonic functions) |
imported>Joe Quick m (subpages) |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
In [[mathematics]], an '''injective function''' or '''one-to-one function''' or '''injection''' is a [[function (mathematics)|function]] which has different output values on different input values: ''f'' is injective if <math>x_1 \neq x_2</math> implies that <math>f(x_1) \neq f(x_2)</math>. | In [[mathematics]], an '''injective function''' or '''one-to-one function''' or '''injection''' is a [[function (mathematics)|function]] which has different output values on different input values: ''f'' is injective if <math>x_1 \neq x_2</math> implies that <math>f(x_1) \neq f(x_2)</math>. | ||
Revision as of 11:23, 13 November 2008
In mathematics, an injective function or one-to-one function or injection is a function which has different output values on different input values: f is injective if implies that .
An injective function f has a well-defined partial inverse . If y is an element of the image set of f, then there is at least one input x such that . If f is injective then this x is unique and we can define to be this unique value. We have for all x in the domain.
A strictly monotonic function is injective, since in this case implies that .