Tetration/Bibliography: Difference between revisions
Jump to navigation
Jump to search
imported>Dmitrii Kouznetsov (If the structure is correct, I add more refs) |
imported>Dmitrii Kouznetsov (update refs for base e) |
||
Line 15: | Line 15: | ||
Tetration for base <math>b\!=\!\mathrm{e}</math> | Tetration for base <math>b\!=\!\mathrm{e}</math> | ||
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], | <ref name="k"> | ||
{{cite journal | |||
|author=D.Kouznetsov. | |||
|title=Solutions of <math>F(z\!+\!1)=\exp(F(z))</math> in the complex <math>z</math>plane. | |||
|journal=[[Mathematics of Computation]], | |||
|year=2009 | |||
|volume=78 | |||
|pages=1647-1670 | |||
|url= http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html | |||
|preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf | |||
|doi=10.1090/S0025-5718-09-02188-7 | |||
}}preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf | |||
</ref><ref name="vladie"> | |||
{{cite journal | |||
|author=D.Kouznetsov. | |||
|title=Superexponential as special function. | |||
|journal=[[Vladikavkaz Mathematical Journal]], in press. | |||
}} | |||
Preprint, English version: http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf | |||
</ref> | |||
<!-- | |||
Linear and piece-vice approximation of tetration. | Linear and piece-vice approximation of tetration. | ||
<ref name="uxp"> | <ref name="uxp"> | ||
Line 25: | Line 45: | ||
Tetration for <math>b\!=\!\mathrm{e}</math> | Tetration for <math>b\!=\!\mathrm{e}</math> | ||
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref> | <ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref> | ||
!--> | |||
Other solutions of equation <math>F(z+1)=\exp(F(z))</math>: | |||
<ref name="kneser"> | <ref name="kneser"> | ||
H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. | H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. | ||
Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67. | Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67. | ||
</ref> | </ref> | ||
Application of tetration <ref> | Application of tetration <ref> | ||
Line 56: | Line 76: | ||
</ref>. | </ref>. | ||
About iterations: | |||
<ref>A.Knoebel | <ref>{{cite journal | ||
|author=A.Knoebel | |||
|title=Exponentials Reiterated | |||
|journal=Amer. Math. Monthly | |||
|volume=88 | |||
|year=1981 | |||
|pages=235-252 | |||
}}</ref> | |||
<references/> | <references/> |
Revision as of 21:37, 15 November 2009
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
Ethimology of tetration [1].
Tetration for base [2].
Other solutions of equation :
[5]
Application of tetration [6] [7] [8] [2].
About iterations: [9]
- ↑ R.L.Goodstein (1947). "Transfinite ordinals in recursive number theory". Journal of Symbolic Logic 12.
- ↑ 2.0 2.1 2.2 D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008.
http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf Cite error: Invalid
<ref>
tag; name "k2" defined multiple times with different content Cite error: Invalid<ref>
tag; name "k2" defined multiple times with different content - ↑ D.Kouznetsov. (2009). "Solutions of in the complex plane.". Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7. Research Blogging. preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
- ↑ D.Kouznetsov.. "Superexponential as special function.". Vladikavkaz Mathematical Journal, in press.. Preprint, English version: http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf
- ↑ H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
- ↑ P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
- ↑ M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
- ↑ 8.0 8.1 W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen 99(1928), 118-133
- ↑ A.Knoebel (1981). "Exponentials Reiterated". Amer. Math. Monthly 88: 235-252.