Tetration/Bibliography: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
(If the structure is correct, I add more refs)
imported>Dmitrii Kouznetsov
(update refs for base e)
Line 15: Line 15:


Tetration for base <math>b\!=\!\mathrm{e}</math>
Tetration for base <math>b\!=\!\mathrm{e}</math>
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref>
<ref name="k">
{{cite journal
|author=D.Kouznetsov.
|title=Solutions of <math>F(z\!+\!1)=\exp(F(z))</math> in the complex <math>z</math>plane.  
|journal=[[Mathematics of Computation]],
|year=2009
|volume=78
|pages=1647-1670
|url= http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
|preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
|doi=10.1090/S0025-5718-09-02188-7
}}preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
</ref><ref name="vladie">
{{cite journal
|author=D.Kouznetsov.
|title=Superexponential as special function.
|journal=[[Vladikavkaz Mathematical Journal]], in press.
}}
Preprint, English version: http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf
</ref>


<!--
Linear and piece-vice approximation of tetration.
Linear and piece-vice approximation of tetration.
<ref name="uxp">
<ref name="uxp">
Line 25: Line 45:
Tetration for <math>b\!=\!\mathrm{e}</math>
Tetration for <math>b\!=\!\mathrm{e}</math>
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref>
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref>
!-->


Solutions of equation <math>F(z+1)=\exp(F(z))</math>:
Other solutions of equation <math>F(z+1)=\exp(F(z))</math>:
<ref name="kneser">
<ref name="kneser">
H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”.
H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”.
Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
</ref>
</ref>
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref>


Application of tetration <ref>
Application of tetration <ref>
Line 56: Line 76:
</ref>.
</ref>.


Additional literature around
About iterations:
<ref>A.Knoebel. ”Exponentials Reiterated.” Amer. Math. Monthly 88 (1981), 235-252.</ref>
<ref>{{cite journal
|author=A.Knoebel
|title=Exponentials Reiterated
|journal=Amer. Math. Monthly
|volume=88
|year=1981
|pages=235-252
}}</ref>
 




<references/>
<references/>

Revision as of 21:37, 15 November 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Code [?]
 
A list of key readings about Tetration.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.

Ethimology of tetration [1].

Tetration for base [2].

Tetration for base [3][4]


Other solutions of equation : [5]

Application of tetration [6] [7] [8] [2].

Ackermann Function [8] [2].

About iterations: [9]


  1. R.L.Goodstein (1947). "Transfinite ordinals in recursive number theory". Journal of Symbolic Logic 12.
  2. 2.0 2.1 2.2 D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008. http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content
  3. D.Kouznetsov. (2009). "Solutions of in the complex plane.". Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7. Research Blogging. preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
  4. D.Kouznetsov.. "Superexponential as special function.". Vladikavkaz Mathematical Journal, in press.. Preprint, English version: http://www.ils.uec.ac.jp/~dima/PAPERS/2009vladie.pdf
  5. H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
  6. P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
  7. M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006)
  8. 8.0 8.1 W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen 99(1928), 118-133
  9. A.Knoebel (1981). "Exponentials Reiterated". Amer. Math. Monthly 88: 235-252.