Cameron–Erdős conjecture: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (New article, my own wording from Wikipedia) |
imported>Richard Pinch (remove WPmarkup; subpages) |
||
Line 1: | Line 1: | ||
The '''Cameron-Erdős conjecture''' in the field of [[combinatorics | {{subpages}} | ||
The '''Cameron-Erdős conjecture''' in the field of [[combinatorics]] is the statement that the number of [[sum-free set]]s contained in <math>\{1,\ldots,N\}</math> is <math>O\left({2^{N/2}}\right)</math>. | |||
The conjecture was stated by [[Peter Cameron (mathematician)|Peter Cameron]] and [[Paul Erdős]] in 1988<ref>P.J. Cameron and P. Erdős, ''On the number of sets of integers with various properties'', Number theory (Banff, 1988), de Gruyter, Berlin 1990, pp.61-79</ref>. It was proved by [[Ben Green]] in 2003<ref>B. Green, [http://www.arxiv.org/pdf/math.NT/0304058 The Cameron-Erdős conjecture], 2003.</ref> <ref>B. Green, ''The Cameron-Erdős conjecture'', Bulletin of the [[London Mathematical Society]] '''36''' (2004) pp.769-778</ref>. | The conjecture was stated by [[Peter Cameron (mathematician)|Peter Cameron]] and [[Paul Erdős]] in 1988<ref>P.J. Cameron and P. Erdős, ''On the number of sets of integers with various properties'', Number theory (Banff, 1988), de Gruyter, Berlin 1990, pp.61-79</ref>. It was proved by [[Ben Green]] in 2003<ref>B. Green, [http://www.arxiv.org/pdf/math.NT/0304058 The Cameron-Erdős conjecture], 2003.</ref> <ref>B. Green, ''The Cameron-Erdős conjecture'', Bulletin of the [[London Mathematical Society]] '''36''' (2004) pp.769-778</ref>. | ||
Line 5: | Line 6: | ||
==References== | ==References== | ||
<references/> | <references/> | ||
Revision as of 14:07, 29 October 2008
The Cameron-Erdős conjecture in the field of combinatorics is the statement that the number of sum-free sets contained in is .
The conjecture was stated by Peter Cameron and Paul Erdős in 1988[1]. It was proved by Ben Green in 2003[2] [3].
References
- ↑ P.J. Cameron and P. Erdős, On the number of sets of integers with various properties, Number theory (Banff, 1988), de Gruyter, Berlin 1990, pp.61-79
- ↑ B. Green, The Cameron-Erdős conjecture, 2003.
- ↑ B. Green, The Cameron-Erdős conjecture, Bulletin of the London Mathematical Society 36 (2004) pp.769-778