Green's Theorem: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (sp)
imported>Paul Wormer
(appended 3D case)
Line 26: Line 26:
: <math>
: <math>
A=\frac{1}{2}\oint\limits_{\partial \Omega}(xy'-x'y)dt
A=\frac{1}{2}\oint\limits_{\partial \Omega}(xy'-x'y)dt
</math>
==Green's theorem in three dimensions==
Different ways of formulating Green's theorem in three dimensions may be found. One of the more useful formulations is
: <math>
\iiint\limits_V \Big( \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi\Big)\, d V =
\iint\limits_{\partial V} \big(\phi \boldsymbol{\nabla}\psi\big) \cdot d\mathbf{S} - \iint\limits_{\partial V} \big(\psi \boldsymbol{\nabla}\phi\big)  \cdot d\mathbf{S}.
</math>
===Proof===
The [[divergence theorem]] reads
: <math >\iiint\limits_V \nabla \cdot \mathbf{F} \, d V =
\iint\limits_{\partial V}\mathbf{F} \cdot d\mathbf{S}
</math>
where <math>d\mathbf{S}</math> is defined by <math>d\mathbf{S}=\mathbf{n} \, dS</math> and <math>\mathbf{n}</math> is the outward-pointing unit normal vector field.
Insert
:<math>
\mathbf{F} = \phi \boldsymbol{\nabla}\psi - \psi \boldsymbol{\nabla}\phi
</math>
and use
:<math>
\begin{align}
\boldsymbol{\nabla}\cdot \mathbf{F} &= \big(\boldsymbol{\nabla}\phi\big)\cdot \big(\boldsymbol{\nabla}\psi\big)
-\big(\boldsymbol{\nabla}\psi\big)\cdot \big( \boldsymbol{\nabla}\phi\big)
+ \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi \\
&= \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi
\end{align}
</math>
so that we obtain the result to be proved,
: <math>
\iiint\limits_V  \phi \boldsymbol{\nabla}^2\psi - \psi \boldsymbol{\nabla}^2\phi\, d V =
\iint\limits_{\partial V}\phi \boldsymbol{\nabla}\psi \cdot d\mathbf{S} - \iint\limits_{\partial V}\psi \boldsymbol{\nabla}\phi  \cdot d\mathbf{S} .
</math>
</math>

Revision as of 12:03, 8 January 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Green's Theorem is a vector identity that is equivalent to the curl theorem in two dimensions. It relates the line integral around a simple closed curve with the double integral over the plane region .

The theorem is named after the British mathematician George Green. It can be applied to various fields in physics, among others flow integrals.

Mathematical Statement

Let be a region in with a positively oriented, piecewise smooth, simple closed boundary . and are functions defined on a open region containing and have continuous partial derivatives in that region. Then Green's Theorem states that

The theorem is equivalent to the curl theorem in the plane and can be written in a more compact form as

Applications

Area Calculation

Green's theorem is very useful when it comes to calculating the area of a region. If we take and , the area of the region , with boundary can be calculated by

This formula gives a relationship between the area of a region and the line integral around its boundary.

If the curve is parametrisized as , the area formula becomes

Green's theorem in three dimensions

Different ways of formulating Green's theorem in three dimensions may be found. One of the more useful formulations is

Proof

The divergence theorem reads

where is defined by and is the outward-pointing unit normal vector field.

Insert

and use

so that we obtain the result to be proved,