Binomial coefficient: Difference between revisions
Jump to navigation
Jump to search
imported>Alexander Wiebel m (.) |
imported>Alexander Wiebel (→Definition: formatting) |
||
Line 3: | Line 3: | ||
== Definition == | == Definition == | ||
:<math>{n \choose k} = \frac{n\cdot (n-1)\cdot (n-2) \cdots (n-k+1)}{1\cdot 2\cdot 3\cdots k} = \frac{n!}{k!\cdot (n-k)!}\quad\mathrm{for}\ n \ge k \ge 0</math> | |||
=== Example === | |||
:<math>{8 \choose 3} = \frac{8\cdot 7\cdot 6}{1\cdot 2\cdot 3} = 56</math> | |||
== Formulas involving binomial coefficients == | |||
:<math>{n \choose k} = {n \choose n-k}</math> | |||
:<math>{n \choose n} = {n \choose 0} = 1\quad\mathrm{for}\ n \ge 0</math> | |||
:<math>{n \choose 1} = n\quad\mathrm{for}\ n \ge 1</math> | |||
:<math>{n \choose k} = {n-1 \choose k} + {n-1 \choose k-1}</math> | |||
:<math>{n \choose k} = 0\quad\mathrm{if}\ k > n\ \mathrm{or}\ k\ < 0</math> | |||
=== Examples === | |||
:<math>k > n\ \mathrm{:}\ {n \choose k} = \frac{n\cdot n-1\cdot n-2 \cdots n-n \cdots n-k+1}{1\cdot 2\cdot 3\cdots k}</math> = <math>{n \choose k} = \frac{0}{1\cdot 2\cdot 3\cdots k} = 0</math> | |||
:<math>k\ < 0\ \mathrm{:}\ {n \choose n-k} = {n \choose k}</math> | |||
:<math>n-k > n \Rightarrow {n \choose n-k} = 0</math> | |||
== Usage == | == Usage == |
Revision as of 14:14, 8 June 2008
The binomial coefficient is a part of combinatorics. The binomial coefficient represent the number of possible choices of k elements out of n elements. The binomial coefficient is written as
Definition
Example
Formulas involving binomial coefficients
Examples
- =
Usage
The binomial coeffizient is used in the Lottery. For example the german Lotto have a System, where you can choose 6 numbers from the numbers 1 to 49. The binomial coeffizient is 13.983.816, so the probability to choose the correct six numbers is 1 to 13.983.816
binomial coefficients and prime numbers
Iff p is a prime number than p divides for every . The converse is true.