Binomial coefficient: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Alexander Wiebel
m (.)
imported>Alexander Wiebel
(→‎Definition: formatting)
Line 3: Line 3:


== Definition ==
== Definition ==
*<math>{n \choose k} = \frac{n\cdot n-1\cdot n-2 \cdots n-k+1}{1\cdot 2\cdot 3\cdots k}</math>
:<math>{n \choose k} = \frac{n\cdot (n-1)\cdot (n-2) \cdots (n-k+1)}{1\cdot 2\cdot 3\cdots k} = \frac{n!}{k!\cdot (n-k)!}\quad\mathrm{for}\ n \ge k \ge 0</math>
:Example: <math>{8 \choose 3} = \frac{8\cdot 7\cdot 6}{1\cdot 2\cdot 3} = 56</math>
=== Example ===
*<math>{n \choose k} = \frac{n!}{k!\cdot (n-k!}</math> for <math>n \ge k \ge 0</math>
:<math>{8 \choose 3} = \frac{8\cdot 7\cdot 6}{1\cdot 2\cdot 3} = 56</math>
*<math>{n \choose k} = {n \choose n-k}</math>
== Formulas involving binomial coefficients ==
*<math>{n \choose n} = {n \choose 0} = 1</math> for <math>n \ge 0</math>
:<math>{n \choose k} = {n \choose n-k}</math>
*<math>{n \choose 1} = n</math> for <math>n \ge 1</math>
 
*<math>{n \choose k} = {n-1 \choose k} + {n-1 \choose k-1}</math>
:<math>{n \choose n} = {n \choose 0} = 1\quad\mathrm{for}\ n \ge 0</math>
*<math>{n \choose k} = 0</math> if <math>k > n\ </math> or <math>k\ < 0</math>
 
:Examples:
:<math>{n \choose 1} = n\quad\mathrm{for}\ n \ge 1</math>
**<math>k > n\ </math>:<math>{n \choose k} = \frac{n\cdot n-1\cdot n-2 \cdots n-n \cdots n-k+1}{1\cdot 2\cdot 3\cdots k}</math> = <math>{n \choose k} = \frac{0}{1\cdot 2\cdot 3\cdots k} = 0</math>
 
**<math>k\ < 0</math>: <math>{n \choose n-k} = {n \choose k}</math>
:<math>{n \choose k} = {n-1 \choose k} + {n-1 \choose k-1}</math>
::<math>n-k > n => {n \choose n-k} = 0</math>
 
:<math>{n \choose k} = 0\quad\mathrm{if}\ k > n\ \mathrm{or}\ k\ < 0</math>
 
=== Examples ===
:<math>k > n\ \mathrm{:}\ {n \choose k} = \frac{n\cdot n-1\cdot n-2 \cdots n-n \cdots n-k+1}{1\cdot 2\cdot 3\cdots k}</math> = <math>{n \choose k} = \frac{0}{1\cdot 2\cdot 3\cdots k} = 0</math>
 
:<math>k\ < 0\ \mathrm{:}\ {n \choose n-k} = {n \choose k}</math>
 
:<math>n-k > n \Rightarrow {n \choose n-k} = 0</math>


== Usage ==
== Usage ==

Revision as of 14:14, 8 June 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The binomial coefficient is a part of combinatorics. The binomial coefficient represent the number of possible choices of k elements out of n elements. The binomial coefficient is written as

Definition

Example

Formulas involving binomial coefficients

Examples

=

Usage

The binomial coeffizient is used in the Lottery. For example the german Lotto have a System, where you can choose 6 numbers from the numbers 1 to 49. The binomial coeffizient is 13.983.816, so the probability to choose the correct six numbers is 1 to 13.983.816

binomial coefficients and prime numbers

Iff p is a prime number than p divides for every . The converse is true.