Porphyromonas gingivalis: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Yelena Fuzaylova
imported>Yelena Fuzaylova
Line 26: Line 26:


The genome of p. gingivalis is circular and its origin of replication is located at oriC which is juxtaposed by the genes dnaA and PG1949. The guanine and cytosine nucleotides make up approximately 49%. At the present, 2,015 genes have been acknowledged with a total of 23,43,479 nucleotides. It has been found that the genome of p. gingivalis is similar to that of Bacteroides thetaiotaomicron, and B.fragilis within the Cytophaga-Flavobacteria-Bacteroides genome. In addition, it closely resembles the genomes of Chlorobium tepidum, and thus this demonstrates the notion that the phyla of Chlorobia and Cytophaga-Flavobacteria-Bacteroides are associated with one another.  It has been discovered using genome analysis that this bacterium can metabolize a range of amino acids which will form different metabolic end products that are lethal to the host which is usually human, as well as harming the host’s gingival tissues, thus causing the expansion of periodontal disease. <ref>[http://microbewiki.kenyon.edu/index.php/Porphyromonas_gingivalis |Microbe Wiki] </ref>
The genome of p. gingivalis is circular and its origin of replication is located at oriC which is juxtaposed by the genes dnaA and PG1949. The guanine and cytosine nucleotides make up approximately 49%. At the present, 2,015 genes have been acknowledged with a total of 23,43,479 nucleotides. It has been found that the genome of p. gingivalis is similar to that of Bacteroides thetaiotaomicron, and B.fragilis within the Cytophaga-Flavobacteria-Bacteroides genome. In addition, it closely resembles the genomes of Chlorobium tepidum, and thus this demonstrates the notion that the phyla of Chlorobia and Cytophaga-Flavobacteria-Bacteroides are associated with one another.  It has been discovered using genome analysis that this bacterium can metabolize a range of amino acids which will form different metabolic end products that are lethal to the host which is usually human, as well as harming the host’s gingival tissues, thus causing the expansion of periodontal disease. <ref>[http://microbewiki.kenyon.edu/index.php/Porphyromonas_gingivalis |Microbe Wiki] </ref>
It is found that the size of the genome of P. gingivalis is 2.34 mega bases. In addition, the sequencing of the entire genome is important to be able to determine if there are more medical effects of the bacterium in addition to periodontal disease. Researchers want to be able to establish mechanisms for the virulence as well as vaccines. The goals of this project include, the DNA sequence for the genome; analyzing and interpreting the sequence for the W83 strain; integrate the information that was obtained by the interpreted sequences and compare it with the experimental data from the P. gingivalis research community; finally the purpose of the genome sequences is to be able to make clones, reagents, and information to the research community available.<ref>[http://www.pgingivalis.org/aims.htm |P.gingivalis]</ref>
It is found that the size of the genome of P. gingivalis is 2.34 mega bases. In addition, the sequencing of the entire genome is important to be able to determine if there are more medical effects of the bacterium in addition to periodontal disease. Researchers want to be able to establish mechanisms for the virulence as well as vaccines. The goals of this project include, the DNA sequence for the genome; analyzing and interpreting the sequence for the W83 strain; integrate the information that was obtained by the interpreted sequences and compare it with the experimental data from the P. gingivalis research community; finally the purpose of the genome sequences is to be able to make clones, reagents, and information to the research community available.<ref>[http://www.pgingivalis.org/aims.htm |P.gingivalis.org]</ref>


==Cell structure and metabolism==
==Cell structure and metabolism==

Revision as of 19:41, 1 April 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project. If you are not involved with this project, please refrain from collaboratively developing it until this notice is removed.
Articles that lack this notice, including many Eduzendium ones, welcome your collaboration!


Classification

P.gingivalis.jpg

Higher order taxa

Domain:Bacteria

Phylum:Bacteroidetes

Class:Bacteroides

Genus:Porphyromonas gingivalis

Species

Genus species:Porphyromonas gingivalis

Description and significance

Porphyromonas gingivalis is an anaerobic, gram negative bacterium that can be found within the mouth of an individual. It is observed to be non-motile and rod-shaped. This bacterium is the principal source of periodontal disease. It has been found that in addition to causing human infections, this bacterium also causes much of the antibiotic resistance problems found today.[1] The way which it operates is very unique, since it is a gram negative bacteria, it can attach to the subgingival coating of the tooth, and it will substitute the gram positive bacteria that is originally there with its own thus causing an inflammation which will disengage the gums from the teeth. When colonized on blood agar it forms black spots. It is important to sequence the genome of this organism because it is found in many locations within the body not only in the oral cavity also in the gastrointestinal tract, respiratory tract and in the colon, this has many consequences. It has been ascertain that periodontal disease is associated with cardiovascular diseases. This bacterium is associated with Treptonema denticola and Bacteroides forsythus [2]

Genome structure

The genome of p. gingivalis is circular and its origin of replication is located at oriC which is juxtaposed by the genes dnaA and PG1949. The guanine and cytosine nucleotides make up approximately 49%. At the present, 2,015 genes have been acknowledged with a total of 23,43,479 nucleotides. It has been found that the genome of p. gingivalis is similar to that of Bacteroides thetaiotaomicron, and B.fragilis within the Cytophaga-Flavobacteria-Bacteroides genome. In addition, it closely resembles the genomes of Chlorobium tepidum, and thus this demonstrates the notion that the phyla of Chlorobia and Cytophaga-Flavobacteria-Bacteroides are associated with one another. It has been discovered using genome analysis that this bacterium can metabolize a range of amino acids which will form different metabolic end products that are lethal to the host which is usually human, as well as harming the host’s gingival tissues, thus causing the expansion of periodontal disease. [3] It is found that the size of the genome of P. gingivalis is 2.34 mega bases. In addition, the sequencing of the entire genome is important to be able to determine if there are more medical effects of the bacterium in addition to periodontal disease. Researchers want to be able to establish mechanisms for the virulence as well as vaccines. The goals of this project include, the DNA sequence for the genome; analyzing and interpreting the sequence for the W83 strain; integrate the information that was obtained by the interpreted sequences and compare it with the experimental data from the P. gingivalis research community; finally the purpose of the genome sequences is to be able to make clones, reagents, and information to the research community available.[4]

Cell structure and metabolism

The P.gingivalis is a gram-negative, non-motile, rod-shaped, anaerobic organism. To function, it undergoes a mechanism in which it binds to the subgingival layer of the mouth using fimbriae. These fimbriae not only aid in the role of adhesion but are also found to be pathogenic to the immune system. [5] P. gingivalis takes part in Iron Transport, the way it does this is by using a hemin as a device to help it transport iron. When this builds up it results in the black pigmentation that is detected. To bring the hemin iron complex into the cell it uses an ABC Transporter. In regards to the metabolism P. gingivalis, it can undergo many different types such as:

Carbohydrate Metabolism:

Glycolysis / Gluconeogenesis

Citrate cycle (TCA cycle)

Pentose phosphate cycle

Pentose and glucuronate interconversions

Fructose and mannose metabolism

Galactose metabolism

Ascorbate and aldarate metabolism

Pyruvate metabolism

Glyoxylate and dicarboxylate metabolism

Propanoate metabolism

Butanoate metabolism

C5-Branched dibasic acid metabolism


Energy Metabolism:

Oxidative phosphorylation

ATP synthase

Methane metabolism

Carbon fixation

Reductive carboxylate cycle (CO2 fixation)

Nitrogen metabolism

Sulfur metabolism

Lipid Metabolism:

Fatty acid biosynthesis

Fatty acid metabolism

Synthesis and degradation of ketone bodies

Sterol biosynthesis

Bile acid biosynthesis

C21-Steroid hormone metabolism

Androgen and estrogen metabolism

Nucleotide Metabolism:

Purine metabolism

Pyrimidine metabolism

Nucleotide sugars metabolism

Amino Acid Metabolism:

Glutamate metabolism

Alanine and aspartate metabolism

Glycine, serine and threonine metabolism

Methionine metabolism

Cysteine metabolism

Valine, leucine and isoleucine degradation

Valine, leucine and isoleucine biosynthesis

Lysine biosynthesis

Lysine degradation

Arginine and proline metabolism

Histidine metabolism

Tyrosine metabolism

Phenylalanine metabolism

Tryptophan metabolism

Phenylalanine, tyrosine and tryptophan biosynthesis

Urea cycle and metabolism of amino groups

Metabolism of Other Amino Acids:

beta-Alanine metabolism

Taurine and hypotaurine metabolism

Aminophosphonate metabolism

Selenoamino acid metabolism

Cyanoamino acid metabolism

D-Glutamine and D-glutamate metabolism

D-Arginine and D-ornithine metabolism

D-Alanine metabolism

Glutathione metabolism

Metabolism of Complex Carbohydrates:

Starch and sucrose metabolism

Biosynthesis and degradation of glycoprotein

Aminosugars metabolism

Lipopolysaccharide biosynthesis

Peptideglycan biosynthesis

Glycosaminoglycan degradation

Metabolism of Complex Lipids:

Glycerolipid metabolism

Inositol phosphate metabolism

Sphingophospholipid biosynthesis

Phospholipid degradation

Sphingoglycolipid metabolism

Prostaglandin and leukotriene metabolism

Metabolism of Cofactors and Vitamins:

Thiamine metabolism

Riboflavin metabolism

Vitamin B6 metabolism

Nicotinate and nicotinamide metabolism

Pantothenate and CoA biosynthesis

Biotin metabolism

Folate biosynthesis

One carbon pool by folate

Retinol metabolism

Porphyrin and chlorophyll metabolism

Ubiquinone biosynthesis

Ecology

The organism P. gingivalis is usually found in the orifice of mammals usually humans. It is associated with Treptonema denticola and Bacteroides forsythus. There is no valid evidence that the relationship is symbiotic, but is still under researched theory. It contributes to the formation of gingivitis which is a periodontal disease.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.