Acceleration due to gravity: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
m (No changes. Just eliminated the odd spacing of the edit page to make it easier to read.)
imported>Paul Wormer
m (9.80656 --> 9.80665; note on use of g_n)
Line 9: Line 9:


The 3rd General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM) defined in 1901 a standard value denoted as ''g<sub>n</sub>''.<ref>[http://physics.nist.gov/Document/sp330.pdf The International System of Units (SI), NIST Special Publication 330, 2001 Edition] (pdf page 29 of 77 pdf pages)</ref>
The 3rd General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM) defined in 1901 a standard value denoted as ''g<sub>n</sub>''.<ref>[http://physics.nist.gov/Document/sp330.pdf The International System of Units (SI), NIST Special Publication 330, 2001 Edition] (pdf page 29 of 77 pdf pages)</ref>
<ref>[http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf  Bureau International des Poids et Mesures] (pdf page 51 of 88 pdf
<ref>[http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf  Bureau International des Poids et Mesures] (Brochure on SI, pdf page 51 of 88 pdf pages)</ref> The value of the ''standard acceleration due to gravity'' ''g<sub>n</sub>'' is 9.80665 m s<sup>&minus;2</sup>. This value of ''g<sub>n</sub>'' was the conventional reference for calculating the now obsolete unit kilogram force.
pages)</ref> The value of the ''standard acceleration due to gravity'' ''g<sub>n</sub>'' is 9.80656 m s<sup>&minus;2</sup>.


==References==
==References==

Revision as of 06:46, 29 May 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

An object with mass m near the surface of the Earth experiences a downward gravitational force of magnitude mg, where g is the acceleration due to gravity. The quantity g has the dimension of acceleration, m s−2, hence its name.

Newton's gravitational law gives the following formula for g,

where G is the universal gravitational constant,[1] G = 6.67428 × 10−11 m3 kg−1 s−2, ME is the total mass of the Earth, and RE is the radius of the Earth. This equation gives a good approximation, but is not exact. Deviations are caused by the centrifugal force due to the rotation of the Earth around its axis, non-sphericity of the Earth, and the non-homogeneity of the composition of the Earth. These effects cause g to vary roughly ± 0.01 around the value 9.8 m s−2 from place to place on the surface of the Earth. The quantity g is therefore referred to as the local gravitational acceleration.

The 3rd General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM) defined in 1901 a standard value denoted as gn.[2] [3] The value of the standard acceleration due to gravity gn is 9.80665 m s−2. This value of gn was the conventional reference for calculating the now obsolete unit kilogram force.

References