imported>Robert W King |
imported>Wlodzimierz Holsztynski |
Line 18: |
Line 18: |
|
| |
|
| ==Properties== | | ==Properties== |
|
| |
| *The quotient of two consecutive fibonacci numbers converges to the [[golden ratio]]:
| |
|
| |
| :::<math>\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi</math>
| |
|
| |
|
| Below, we will apply the following simple observation to Fibonacci numbers: | | Below, we will apply the following simple observation to Fibonacci numbers: |
In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:
![{\displaystyle F_{n}:={\begin{cases}0&{\mbox{if }}n=0;\\1&{\mbox{if }}n=1;\\F_{n-1}+F_{n-2}&{\mbox{if }}n>1.\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00008893a71eebbf4e7d89a0c162fe6359f5ac8c)
The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with a single pair of rabbits.
Properties
Below, we will apply the following simple observation to Fibonacci numbers:
if three integers
satisfy equality
then
![{\displaystyle \ \gcd(a,b)\ =\ \gcd(a,c)=\gcd(b,c).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe1f82cbf2226190742b09093e29ac452641b288)
![{\displaystyle \gcd \left(F_{n},F_{n+1}\right)\ =\ \gcd \left(F_{n},F_{n+2}\right)\ =\ 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51c297f4b91a052a7d085403967d996e3bddff0e)
Indeed,
![{\displaystyle \gcd \left(F_{0},F_{1}\right)\ =\ \gcd \left(F_{0},F_{2}\right)\ =\ 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49e543d214867aa0fa8a655868503e75ca70db94)
and the rest is an easy induction.
![{\displaystyle F_{n}\ =\ F_{k+1}\cdot F_{n-k}+F_{k}\cdot F_{n-k-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c56dbbf64bc6a2a24d305387effe371a0dd3a5c0)
- for all integers
such that ![{\displaystyle \ 0\leq k<n.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c636a6f01410974e163c0eb0bc4b7e32957252d6)
Indeed, the equality holds for
and the rest is a routine induction on
Next, since
, the above equality implies:
![{\displaystyle \gcd \left(F_{k},F_{n}\right)\ =\ \gcd \left(F_{k},F_{n-k}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21c9e1b6f394d1e5dbc622983c9f2fdd5a9def7c)
which, via Euclid algorithm, leads to:
![{\displaystyle \gcd(F_{m},F_{n})\ =\ F_{\gcd(m,n)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/509a36e793991216a9af4617b4efcb1e1ebe27fc)
Let's note the two instant corollaries of the above statement:
- If
divides
then
divides ![{\displaystyle \ F_{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/53f64aac3251d0ee585a0f71f447fcecafc51476)
- If
is a prime number then
is prime. (The converse is false.)
![{\displaystyle \sum _{i=0}^{n}F_{i}^{2}=F_{n}\cdot F_{n+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e47854eb1d57bbc4176621398a343a8ee4451527)
Direct formula
We have
![{\displaystyle F_{n}\ =\ {\frac {1}{\sqrt {5}}}\cdot \left(\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a91a8b5d28fd30b9fe698327c3483f77be546519)
for every
.
Indeed, let
and
. Let
![{\displaystyle f_{n}\ :=\ {\frac {1}{\sqrt {5}}}\cdot (A^{n}-a^{n})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdacf5074f5560a0aa14ef534782b08de4f8011)
Then:
and ![{\displaystyle \ f_{1}=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c754577bc3a87fedb269c17aa0a4afd510954174)
hence ![{\displaystyle \ A^{n+2}=A^{n+1}+A^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d6a827b03e84581e3473bf1e4b87934f3fe79e)
hence ![{\displaystyle a^{n+2}=a^{n+1}+a^{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c521491bf1e404a03afaede928e51d6bc7890dfc)
![{\displaystyle f_{n+2}\ =\ f_{n+1}+f_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b9a2928ddeaa5a041ae0e96cf0ae8bf57d987dc)
for every
. Thus
for every
and the formula is proved.
Furthermore, we have:
![{\displaystyle A\cdot a=-1\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6e67289e80bb0012bf18aa45e39153cd61d4553)
![{\displaystyle A>1\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd1c3643c485dcaca05621ea6056995752259f2)
![{\displaystyle -1<a<0\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ed51d0637826bf787277dfbab290b1edc0ece29)
![{\displaystyle {\frac {1}{2}}\ >\ \left|{\frac {1}{\sqrt {5}}}\cdot a^{n}\right|\quad \rightarrow \quad 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b44c516a34da87eb8a4ff4b72d49472efbbb21)
It follows that
is the nearest integer to ![{\displaystyle {\frac {1}{\sqrt {5}}}\cdot \left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07bfffce67fac19c1ffa5ee311cdc6d400c2e587)
for every
. It follows that
; thus the value of the golden ratio is
.
Further reading