Fibonacci number: Difference between revisions
imported>Aleksander Stos m (no more residues) |
imported>Aleksander Stos m (math formula is universal) |
||
Line 10: | Line 10: | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
The sequence of Fibonacci numbers starts: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... | The sequence of Fibonacci numbers starts: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... |
Revision as of 10:24, 8 January 2008
![](http://s9.addthis.com/button1-share.gif)
In mathematics, the Fibonacci numbers form a sequence in which the first number in the sequence is 0, the second number is 1, and each subsequent number is equal to the sum of the previous two numbers. In mathematical terms, it is defined by the following recurrence relation:
The sequence of Fibonacci numbers starts: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with a single pair of rabbits.
Properties
We will apply the following simple observation to Fibonacci numbers:
if three integers satisfy equality then
Indeed,
and the rest is an easy induction.
- for all integers such that
Indeed, the equality holds for and the rest is a routine induction on
Next, since , the above equality implies:
which, via Euclid algorithm, leads to:
Let's note the two instant corollaries of the above statement:
- If divides then divides
- If is a prime number different from 3, then is prime. (The converse is false.)
Direct formula and the golden ratio
We have
for every .
Indeed, let and . Let
Then:
- and
- hence
- hence
for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n=0,1,\dots} . Thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f_n = F_n} for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n=0,1,\dots,} and the formula is proved.
Furthermore, we have:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\cdot a = -1\ }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A > 1\ }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1 < a < 0\ }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\ >\ \left|\frac{1}{\sqrt{5}}\cdot a^n\right|\quad\rightarrow\quad 0}
It follows that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_n\ } is the nearest integer to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{5}}\cdot \left(\frac{1+\sqrt{5}}{2}\right)^n}
for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n=0,1,\dots} . The above constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A} is known as the famous golden ratio Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Phi.} Thus:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\ =\ \lim_{n\to\infty}\frac{F(n+1)}{F(n)}\ =\ \frac{1+\sqrt{5}}{2}}
Further reading
- John H. Conway und Richard K. Guy, The Book of Numbers, ISBN 0-387-97993-X