Sigma algebra: Difference between revisions
imported>Hendra I. Nurdin mNo edit summary |
imported>Hendra I. Nurdin mNo edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
In [[mathematics]], a '''sigma algebra''' is a [[mathematical structure|formal mathematical structure]] intended among other things to provide a rigid basis for [[measure theory]] and axiomatic [[probability theory]]. In essence it is a collection of subsets of an arbitrary set <math>\scriptstyle \Omega</math> that contains <math>\scriptstyle \Omega</math> itself and which is closed under the taking of complements (with respect to <math>\scriptstyle \Omega</math>) and countable unions. It is found to be just the right structure that allows construction of non-trivial and useful [[measure (mathematics)|measures]] on which a rich theory of [[Lebesgue integral|( | In [[mathematics]], a '''sigma algebra''' is a [[mathematical structure|formal mathematical structure]] intended among other things to provide a rigid basis for [[measure theory]] and axiomatic [[probability theory]]. In essence it is a collection of subsets of an arbitrary set <math>\scriptstyle \Omega</math> that contains <math>\scriptstyle \Omega</math> itself and which is closed under the taking of complements (with respect to <math>\scriptstyle \Omega</math>) and countable unions. It is found to be just the right structure that allows construction of non-trivial and useful [[measure (mathematics)|measures]] on which a rich theory of [[Lebesgue integral|(Lebesgue) integration]] can be developed which is much more general than [[Riemann integral|Riemann integration]]. | ||
==Formal definition== | ==Formal definition== |
Revision as of 17:42, 20 December 2007
In mathematics, a sigma algebra is a formal mathematical structure intended among other things to provide a rigid basis for measure theory and axiomatic probability theory. In essence it is a collection of subsets of an arbitrary set that contains itself and which is closed under the taking of complements (with respect to ) and countable unions. It is found to be just the right structure that allows construction of non-trivial and useful measures on which a rich theory of (Lebesgue) integration can be developed which is much more general than Riemann integration.
Formal definition
Given a set , let be its power set, i.e. set of all subsets of . Then a subset F ⊆ P (i.e., F is a collection of subset of ) is a sigma algebra if it satisfies all the following conditions or axioms:
- If then
- If for then
Examples
- For any set S, the power set 2S itself is a σ algebra.
- The set of all Borel subsets of the real line is a sigma-algebra.
- Given the set = {Red, Yellow, Green}, the subset F = {{}, {Green}, {Red, Yellow}, {Red, Yellow, Green}} of is a σ algebra.
See also
External links
- Tutorial on sigma algebra at probability.net