Special function/Catalogs/Catalog: Difference between revisions
< Special function | Catalogs
Jump to navigation
Jump to search
imported>Catherine Woodgold (→Elementary transcendental functions: Link to logarithm page) |
imported>Fredrik Johansson m (→Hyperbolic functions: using "mathrm" instead of "operatorname" for consistent rendering) |
||
Line 88: | Line 88: | ||
|- | |- | ||
|[[Hyperbolic cosecant]] | |[[Hyperbolic cosecant]] | ||
|<math>\ | |<math>\mathrm{csch}(x)</math> | ||
|<math>2/(e^{x}-e^{-x})</math> | |<math>2/(e^{x}-e^{-x})</math> | ||
|- | |- | ||
|[[Hyperbolic secant]] | |[[Hyperbolic secant]] | ||
|<math>\ | |<math>\mathrm{sech}(x)</math> | ||
|<math>2/(e^{x}+e^{-x})</math> | |<math>2/(e^{x}+e^{-x})</math> | ||
|- | |- |
Revision as of 17:04, 28 April 2007
Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.
Algebraic functions
Complex parts
Elementary transcendental functions
Name | Notation |
---|---|
Exponential function | , |
Natural logarithm | , |
Trigonometric functions
Name | Notation | Triangle formula | Exponential formula |
---|---|---|---|
Sine | Opposite / Hypotenuse | ||
Cosine | Adjacent / Hypotenuse | ||
Tangent | Opposite / Adjacent | ||
Cosecant | Hypotenuse / Opposite | ||
Secant | Hypotenuse / Adjacent | ||
Cotangent | Adjacent / Opposite |
Hyperbolic functions
Name | Notation | Exponential formula |
---|---|---|
Hyperbolic sine | ||
Hyperbolic cosine | ||
Hyperbolic tangent | ||
Hyperbolic cosecant | ||
Hyperbolic secant | ||
Hyperbolic cotangent |
Inverse trigonometric functions
Inverse hyperbolic functions
Name | Notation | Logarithmic formula |
---|---|---|
Inverse hyperbolic sine | ||
Inverse hyperbolic cosine | ||
Inverse hyperbolic tangent | ||
Inverse hyperbolic cosecant | ||
Inverse hyperbolic secant | ||
Inverse hyperbolic cotangent |
Other
Function | Notation | Definition |
---|---|---|
Exponential integral | ||
Logarithmic integral |
Function | Notation | Definition |
---|---|---|
Sine integral | ||
Hyperbolic sine integral | ||
Cosine integral | ||
Hyperbolic cosine integral |
Note: is Euler's constant
Related to the normal distribution:
Name | Notation | Definition |
---|---|---|
Gaussian function | none standardized | |
Error function | ||
Complementary error function |
See also gamma related functions below; in particular, the incomplete gamma functions.
Elliptic integrals
Orthogonal polynomials
See catalog of orthogonal polynomials for a more detailed listing.
Name | Notation | Interval | Weight function | , , , , ... |
---|---|---|---|---|
Chebyshev (first kind) | , , , , ... | |||
Chebyshev (second kind) | , , , , ... | |||
Legendre | ||||
Hermite | ||||
Laguerre | ||||
Associated Laguerre |
Name | Notation | Discrete formula | Continuous formula |
---|---|---|---|
Factorial | |||
Gamma function | |||
Double factorial |
|
||
Binomial coefficient | |||
Rising factorial | |||
Falling factorial | |||
Beta function | |||
Harmonic number | |||
Digamma function | |||
Polygamma function (of order m) |
- Incomplete gamma function
- Incomplete beta function
- Regularized gamma function
- Regularized beta function
- Barnes G-function
Notes:
- is Euler's constant
- The polygamma functions are generalized to continuous m by the Hurwitz zeta function
Hypergeometric functions
Note: many of the preceding functions are special cases of the following:
See also
Further reading
- Introductory material: N. N. Lebedev (1972). Special Functions and their applications. Dover.
References
- Milton Abramowitz and Irene A. Stegun (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover. (available online)
- I. S. Gradstein and I. M. Ryzhik (2000). Table of integrals, series and products. Academic Press.
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi (1953). Higher Transcendental Functions (Vol I and II). McGraw-Hill Book Company.