Instruction set architecture: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dominic DeStefano
No edit summary
 
imported>Howard Arvi Hughes
m (fixed cat)
Line 3: Line 3:
Because the instruction set architecture of a CPU is fundamental to its interface and usage, it is often used as a classification of the "type" of CPU.  For example, a "[[PowerPC]] CPU" uses some variant of the PowerPC ISA.  Some CPUs, like the Intel [[Itanium]], can actually interpret instructions for more than one ISA; however this is often accomplished by software means rather than by designing the hardware to directly support both interfaces. (See [[emulator]])
Because the instruction set architecture of a CPU is fundamental to its interface and usage, it is often used as a classification of the "type" of CPU.  For example, a "[[PowerPC]] CPU" uses some variant of the PowerPC ISA.  Some CPUs, like the Intel [[Itanium]], can actually interpret instructions for more than one ISA; however this is often accomplished by software means rather than by designing the hardware to directly support both interfaces. (See [[emulator]])


[[Category:Computers workgroup]]
[[Category:Computers Workgroup]]
[[Category:CZ Live]]
[[Category:CZ Live]]

Revision as of 16:52, 30 March 2007

The instruction set architecture (ISA), is a part of computer architecture related to programming, including the native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception handling, and external I/O. An ISA includes a specification of the set of opcodes (machine language), the native commands used by a particular CPU design.

Because the instruction set architecture of a CPU is fundamental to its interface and usage, it is often used as a classification of the "type" of CPU. For example, a "PowerPC CPU" uses some variant of the PowerPC ISA. Some CPUs, like the Intel Itanium, can actually interpret instructions for more than one ISA; however this is often accomplished by software means rather than by designing the hardware to directly support both interfaces. (See emulator)