Cantor's diagonal argument: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Nick Johnson
m (added a missing right parenthesis)
imported>Michael Hardy
Line 6: Line 6:
:1, '''1''', 1, 1, 0, ...
:1, '''1''', 1, 1, 0, ...
:1, 0, '''1''', 0, 0, ...
:1, 0, '''1''', 0, 0, ...
Now, we construct a sequence ''s=(s<sub>1</sub>,s<sub>2</sub>,s<sub>3</sub>,....)'', which is ''not'' on the list while still, <math>s_i\in\{0,1\}</math> for all ''i''. This is done as follows. Take <math>s_1</math> to be ''different'' from the first digit of the first member on the list. In our example the digit is 0 (in boldface) and so <math>s_1</math> is defined to be 1. Take <math>s_2</math> to be ''different'' from the second digit of the second member on the list (in our example <math>s_2=0</math>). Generally, define <math>s_n</math> as different from the n-th digit of the n-th entry on the list. In other words, the sequence ''s=(s<sub>1</sub>,s<sub>2</sub>,s<sub>3</sub>,....)'' contains "the complement in <math>\{0,1\}</math>" of the diagonal of our table. It follows that that the sequence ''s'' itself is not on the list, since it is different from every member by the definition. The list was supposed to contain ''all'' the 0-1 sequences. The contradiction shows that such sequences can not be enumerated (or they are not countable).  
Now, we construct a sequence ''s'' = (''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>, ....), which is ''not'' on the list while still, <math>s_i\in\{0,1\}</math> for all ''i''. This is done as follows. Take <math>s_1</math> to be ''different'' from the first digit of the first member on the list. In our example the digit is 0 (in boldface) and so <math>s_1</math> is defined to be 1. Take <math>s_2</math> to be ''different'' from the second digit of the second member on the list (in our example <math>s_2=0</math>). Generally, define <math>s_n</math> as different from the n-th digit of the n-th entry on the list. In other words, the sequence ''s=(s<sub>1</sub>,s<sub>2</sub>,s<sub>3</sub>,....)'' contains "the complement in <math>\{0,1\}</math>" of the diagonal of our table. It follows that that the sequence ''s'' itself is not on the list, since it is different from every member by the definition. The list was supposed to contain ''all'' the 0-1 sequences. The contradiction shows that such sequences can not be enumerated (or they are not countable).  


The role of the diagonal clearly explains the name of the argument.
The role of the diagonal clearly explains the name of the argument.

Revision as of 14:50, 19 April 2007

Cantor's diagonal argument provides a convenient proof that the set of subsets of the natural numbers (also known as its power set) is not countable. More generally, it is a recurring theme in computability theory, where perhaps its most well known application is the negative solution to the halting problem.

Informal description

The original Cantor's idea was to show that the family of 0-1 infinite sequences is not countable. This is done by contradiction. If this family is countable then its members can be enumerated or enlisted. Such a list gives a table of digits, like in the following arbitrarily chosen example:

0, 1, 0, 1, 0, ...
1, 1, 1, 1, 0, ...
1, 0, 1, 0, 0, ...

Now, we construct a sequence s = (s1, s2, s3, ....), which is not on the list while still, for all i. This is done as follows. Take to be different from the first digit of the first member on the list. In our example the digit is 0 (in boldface) and so is defined to be 1. Take to be different from the second digit of the second member on the list (in our example ). Generally, define as different from the n-th digit of the n-th entry on the list. In other words, the sequence s=(s1,s2,s3,....) contains "the complement in " of the diagonal of our table. It follows that that the sequence s itself is not on the list, since it is different from every member by the definition. The list was supposed to contain all the 0-1 sequences. The contradiction shows that such sequences can not be enumerated (or they are not countable).

The role of the diagonal clearly explains the name of the argument.

Formal argument

To prove that the family of all subsets of is not countable, we associate to any set a function by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(n) = 1} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in S} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(n) = 0} , otherwise. Conversely, every such function defines a subset. Observe also that every such function corresponds to a 0-1 sequence and vice-versa.

If power set is countable, there is a bijective map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F : \mathbb{N} \rightarrow 2^{\mathbb{N}}} , that allows us to assign an index Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = F^{-1} (S)} to every subset S. In other words, all the functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi: \mathbb{N} \rightarrow \{0, 1\}} can be enumerated as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{\phi_1, \phi_2, \phi_3, \ldots \}} . Assuming this has been done, we proceed to construct a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi : \mathbb{N} \rightarrow \{ 0, 1\}} that is not in this list. Consequently, the corresponding set, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} cannot be in the range of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} .

For each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} , either Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi_i(i) = 0} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi_i(i) = 1} , and so we define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(i)=1-\phi_i(i)} . Clearly, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(i)\in \{0,1\}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(i) \not= \phi_i(i)} .

It follows that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi \not= \phi_i } for any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} , and it must therefore correspond to a set not in the range of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} . This contradiction shows that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\mathbb{N}}} cannot be countable.