Elliptic curve: Difference between revisions
imported>David Lehavi (sketched detailed outline) |
imported>David Lehavi (→Lattices in the complex numbers: first draft of section) |
||
Line 23: | Line 23: | ||
== Elliptic curves over the complex numbers == | == Elliptic curves over the complex numbers == | ||
=== | === one dimensional complex tori and lattices in the complex numbers=== | ||
An elliptic curve over the [[complex numbers]] is a [[Riemann surface]] of genus 1, or a two dimensional [[torus]] over the [[real numbers]]. The [[universal cover]] of this torus, as a [[complex manifold]], is the [[complex line]] <math>\mathbb{C}</math>. Hence the elliptic curve a isomorphic to quotient of the complex numbers by a some [[lattice]]; moreover two elliptic curves are isomorphic if and only the two corresponding lattices are isomorphic. Hence the [[moduli]] of elliptic curves | |||
over the complex numbers is identified the moduli of lattices in <math>\mathbb{C}</math> up to [[homothety]]. For each homothety class there is a lattice such that one of the points of the lattice is 1, and the other is some point <math>\tau</math> in the [[upper half plane]] <math>\mathcal{H}</math>. Hence the moduli of lattices in <math>\mathbb{C}</math> is the quotient <math>\mathcal{H}/PSL_2(\mathbb{Z})</math>, where | |||
<math>PSL_2(\mathbb{Z})</math> acts on the upper half plane via [[mobius transformations]]. The standard [[fundamental domain]] for this action is the set: <math>\{\tau|-\frac{1}{2}<Im(\tau)\leq\frac{1}{2},|\tau|\geq 1,Im(\tau)<0\Rightarrow |\tau|>1\}</math>. | |||
=== modular forms === | === modular forms === | ||
=== Theta functions === | === Theta functions === |
Revision as of 22:04, 17 February 2007
An elliptic curve over a field is a one dimensional Abelian variety over . Alternatively it is a smooth algebraic curve of genus one together with marked point - the identity element.
Curves of genus 1 as smooth plane cubics
If is a homogenous cubic polynomial in three variables, such that at no point all the three derivatives of f are simultaneously zero, then the Null set is a smooth curve of genus 1. Smoothness follows from the condition on derivatives, and the genus can be computed in various ways; e.g.:
- Let be the class of line in the Picard group , then is rationally equivalent to . Then by the adjunction formula we have .
- By the genus degree formula for plane curves we see that
- If we choose a point and a line such that , we may project to by sending a point to the intersection point (if take the line instead of the line ). This is a double cover of a line with four ramification points. Hence by the Riemann-Hurwitz formula
On the other hand, if is a smooth algebraic curve of genus 1, and are points on , then by the Riemann-Roch formula we have
Hence the complete linear system is two dimensional, and the map from to the dual linear system is an embedding.
The group operation on a pointed smooth plane cubic
Let be as above, and point on . If and are two points on we set where if we take the line instead, and the intersection is to be understood with multiplicities. The addition on he elliptic curve is defined as . Both the commutativity and the existence of inverse follow from the definition. The proof of the associativity of this operation is more delicate.
The Weierstrass form
The invariant
Elliptic curves over the complex numbers
one dimensional complex tori and lattices in the complex numbers
An elliptic curve over the complex numbers is a Riemann surface of genus 1, or a two dimensional torus over the real numbers. The universal cover of this torus, as a complex manifold, is the complex line . Hence the elliptic curve a isomorphic to quotient of the complex numbers by a some lattice; moreover two elliptic curves are isomorphic if and only the two corresponding lattices are isomorphic. Hence the moduli of elliptic curves over the complex numbers is identified the moduli of lattices in up to homothety. For each homothety class there is a lattice such that one of the points of the lattice is 1, and the other is some point in the upper half plane . Hence the moduli of lattices in is the quotient , where acts on the upper half plane via mobius transformations. The standard fundamental domain for this action is the set: .
modular forms
Theta functions
For the main article see Theta function
Weierstrass's function
Application: elliptic integrals
Elliptic curves over number fields
Mordel's theorem
Elliptic curves over finite fields
Application:cryptography
Selected References
Further reading
- Joseph H. Silverman, John Tate; "Rational Points on Elliptic Curves". ISBN 0387978259.
- Joseph H. Silverman "The Arithmetic of Elliptic Curves" ISBN 0387962034