Laplacian: Difference between revisions
Jump to navigation
Jump to search
imported>Gemma E. Mason m (turned "spherical coordinates" and "cylindrical coordinates" into links) |
imported>Gemma E. Mason m (turned "spherical coordinates" and "cylindrical coordinates" into links) |
||
Line 6: | Line 6: | ||
<math>\frac{1}{\rho}\frac{\partial}{\partial \rho}\bigl(\rho\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}</math><br /> | <math>\frac{1}{\rho}\frac{\partial}{\partial \rho}\bigl(\rho\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}</math><br /> | ||
In [[spherical | In [[spherical coordinates]], the Laplacian is<br/> | ||
<math>\frac{1}{\rho^{2}}\frac{\partial}{\partial \rho}\bigl(\rho^{2}\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}\theta}\frac{\partial}{\partial\theta}\bigl(\mathrm{sin}\theta\frac{\partial}{\partial\theta}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}</math> | <math>\frac{1}{\rho^{2}}\frac{\partial}{\partial \rho}\bigl(\rho^{2}\frac{\partial}{\partial\rho}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}\theta}\frac{\partial}{\partial\theta}\bigl(\mathrm{sin}\theta\frac{\partial}{\partial\theta}\bigr)+\frac{1}{\rho^{2}\mathrm{sin}^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}</math> |
Revision as of 00:13, 3 September 2010
The Laplacian is a differential operator of the form
where are Cartesian (that is, rectangular) co-ordinates. The Laplacian is usually denoted by the symbol or written as the gradient squared .
In cylindrical coordinates, the Laplacian takes the form
In spherical coordinates, the Laplacian is