Indiscrete space: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch m (rm duplication) |
mNo edit summary |
||
Line 9: | Line 9: | ||
==References== | ==References== | ||
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 }} | * {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 }}[[Category:Suggestion Bot Tag]] |
Latest revision as of 17:00, 31 August 2024
In topology, an indiscrete space is a topological space with the indiscrete topology, in which the only open subsets are the empty subset and the space itself.
Properties
- An indiscrete space is metrizable if and only if it has at most one point
- An indiscrete space is compact.
- An indiscrete space is connected.
- Every map from a topological space to an indiscrete space is continuous.
References
- Lynn Arthur Steen; J. Arthur Seebach jr (1978). Counterexamples in Topology. Berlin, New York: Springer-Verlag. ISBN 0-387-90312-7.