Euler angles/Code: Difference between revisions
Jump to navigation
Jump to search
imported>Paul Wormer (New page: {{subpages}} Fortran-77 subroutine to compute the Euler factorization of a proper orthogonal 3×3 matirx '''A'''. Routine returns Euler angles of the factorization :<math> \mathbf{A} ...) |
imported>Paul Wormer (found a compiler (Absoft) that didn't swallow dimension for implicitly declared type.) |
||
Line 13: | Line 13: | ||
implicit real*8(a-h,o-z) | implicit real*8(a-h,o-z) | ||
parameter (thresh = 1.d-50) | parameter (thresh = 1.d-50) | ||
real*8 A(3,3) | |||
C--Check if matrix is orthogonal with unit determinant. | C--Check if matrix is orthogonal with unit determinant. | ||
Line 31: | Line 31: | ||
implicit real*8(a-h,o-z) | implicit real*8(a-h,o-z) | ||
parameter (thresh = 1.d-12) | parameter (thresh = 1.d-12) | ||
real*8 A(3,3) | |||
do i=1,3 | do i=1,3 | ||
do j=1,i-1 | do j=1,i-1 | ||
Line 78: | Line 78: | ||
implicit real*8(a-h,o-z) | implicit real*8(a-h,o-z) | ||
real*8 A(3,3), b(3) | |||
B(1) = A(2,2)*A(3,3) - A(3,2)*A(2,3) | B(1) = A(2,2)*A(3,3) - A(3,2)*A(2,3) | ||
Line 94: | Line 94: | ||
implicit real*8(a-h,o-z) | implicit real*8(a-h,o-z) | ||
parameter (thresh = 1.d-50) | parameter (thresh = 1.d-50) | ||
real*8 A(3) | |||
R = sqrt( A(1)**2 + A(2)**2 + A(3)**2 ) | R = sqrt( A(1)**2 + A(2)**2 + A(3)**2 ) | ||
Line 124: | Line 124: | ||
implicit real*8(a-h,o-z) | implicit real*8(a-h,o-z) | ||
parameter (thresh = 1.d-50) | parameter (thresh = 1.d-50) | ||
real*8 A(3,3), B1(3), B2(3) | |||
cb = cos(beta) | cb = cos(beta) |
Revision as of 09:22, 2 August 2009
Fortran-77 subroutine to compute the Euler factorization of a proper orthogonal 3×3 matirx A. Routine returns Euler angles of the factorization
Subroutine Euler(A, alpha,beta, gamma) C Determine Euler angles of the proper rotation matrix A. C All conventions according to Biedenharn & Louck C Author P.E.S. Wormer 1985 implicit real*8(a-h,o-z) parameter (thresh = 1.d-50) real*8 A(3,3) C--Check if matrix is orthogonal with unit determinant. Call Check(A) C--Get polar angles of third column Call Polar(A(1,3), alpha, beta) C--Compute gamma Call Comgamma(A, alpha, beta, gamma) end Subroutine Check(A) C Check if matrix is orthogonal with unit determinant. implicit real*8(a-h,o-z) parameter (thresh = 1.d-12) real*8 A(3,3) do i=1,3 do j=1,i-1 t = 0.d0 do k=1,3 t = t + A(i,k)*A(j,k) enddo if (abs(t) .gt. thresh) then write(*,'(1x,a,i1,a,i1,a,d12.5 )') 1 ' Row ',i, ' and ', j, 'non-orthogonal',abs(t) stop 'non-orthogonal' endif enddo t = 0.d0 do k=1,3 t = t + A(i,k)*A(i,k) enddo if (abs(t-1.d0) .gt. thresh) then write(*,'(1x,a,i1,a,d25.15 )') 1 ' Row ',i, ' non-normalized:' , t stop 'non-normalized' endif enddo t = det(A) if (abs(t-1.d0) .gt. thresh) then if (abs(t+1.d0) .lt. thresh) then write(*,'(//1x,a,1x,d14.6,a)') . 'Non-unit determinant:',t, ' will interchange column 1 and 2' do i=1,3 T = A(i,2) A(i,2) = A(i,1) A(i,1) = T enddo else write(*,'(//1x,a,d20.10,a)') . 'Non-unit determinant:',t stop ' Determinant' endif endif end real*8 function det(A) C determinant of A implicit real*8(a-h,o-z) real*8 A(3,3), b(3) B(1) = A(2,2)*A(3,3) - A(3,2)*A(2,3) B(2) = A(3,2)*A(1,3) - A(1,2)*A(3,3) B(3) = A(1,2)*A(2,3) - A(2,2)*A(1,3) det = 0.d0 do i=1,3 det = det + A(i,1)*B(i) enddo end Subroutine Polar(A, alpha, beta) C Get polar angles of vector A. implicit real*8(a-h,o-z) parameter (thresh = 1.d-50) real*8 A(3) R = sqrt( A(1)**2 + A(2)**2 + A(3)**2 ) if ( abs(R) .lt. thresh) then write(*,'(a)') ' zero vector' alpha = 0.d0 beta = 0.d0 return endif beta = acos(A(3)/R) cb = abs (A(3)/R) if ( abs(cb-1.d0) .lt. thresh ) then alpha = 0.d0 return endif alpha = acos( A(1) / (sqrt( A(1)**2 + A(2)**2 ) ) ) if ( A(2) .lt. 0.d0 ) then pi = acos(-1.d0) alpha = 2.d0*pi - alpha endif end Subroutine Comgamma(A, alpha,beta, gamma) C Compute third Euler angle gamma. implicit real*8(a-h,o-z) parameter (thresh = 1.d-50) real*8 A(3,3), B1(3), B2(3) cb = cos(beta) sb = sin(beta) ca = cos(alpha) sa = sin(alpha) B1(1) = ca*cb B1(2) = sa*cb B1(3) = -sb B2(1) = -sa B2(2) = ca B2(3) = 0.d0 cg = 0.d0 sg = 0.d0 do i=1,3 cg = cg + B1(i)*A(i,1) sg = sg + B2(i)*A(i,1) enddo gamma = acos(cg) if ( sg .lt. 0.d0 ) then pi = acos(-1.d0) gamma = 2.d0*pi - gamma endif end