User:Boris Tsirelson/Sandbox1: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Boris Tsirelson
imported>Boris Tsirelson
Line 19: Line 19:


==References==
==References==
{{Citation
| last = Bourbaki
| first = Nicolas
| title = Elements of mathematics: Theory of sets
| year = 1968
| publisher = Hermann (original), Addison-Wesley (translation)
}}.
{{Citation
| year = 1992
| editor-last = Casacuberta
| editor-first = C
| editor2-last = Castellet
| editor2-first = M
| title = Mathematical research today and tomorrow: Viewpoints of seven Fields medalists
| series = Lecture Notes in Mathematics
| volume = 1525
| publisher = Springer-Verlag
| isbn = 3-540-56011-4
}}.
{{Citation
| last = Feynman
| first = Richard
| author-link = Richard Feynman
| title = The character of physical law
| edition = twenty second printing
| year = 1995
| publisher = the MIT press
| isbn = 0 262 56003 8
}}.
{{Citation
| year = 2008
| editor-last = Gowers
| editor-first = Timothy
| title = The Princeton companion to mathematics
| publisher = Princeton University Press
| isbn = 978-0-691-11880-2
}}.


{{Citation
{{Citation
Line 82: Line 41:
  | url = http://www.ams.org/mathscinet-getitem?mr=983381
  | url = http://www.ams.org/mathscinet-getitem?mr=983381
}}.
}}.
(Also [http://personnel.univ-reunion.fr/ardm/inefff.pdf here].)

Revision as of 14:07, 1 September 2010

The general idea of the Cantor–Bernstein–Schroeder theorem and related results may be formulated as follows. If X is similar to a part of Y and at the same time Y is similar to a part of X then X and Y are similar. In order to be specific one should decide

  • what kind of mathematical objects are X and Y,
  • what is meant by "a part",
  • what is meant by "similar".

In the classical Cantor–Bernstein–Schroeder theorem

  • X and Y are sets (maybe infinite),
  • "a part" is interpreted as a subset,
  • "similar" is interpreted as equinumerous.

Not all statements of this form are true. For example, let

  • X and Y are triangles,
  • "a part" means a triangle inside the given triangle,
  • "similar" is interpreted as usual in elementary geometry: triangles related by a dilation (in other words, "triangles with the same shape up to a scale factor", or equivalently "triangles with the same angles").

Then the statement fails badly: every triangle X evidently is similar to some triangle inside Y, and the other way round; however, X and Y need no be similar.

Notes

References

Gowers, W.T. (1996), "A solution to the Schroeder-Bernstein problem for Banach spaces", Bull. London Math. Soc. 28: 297–304.

Casazza, P.G. (1989), "The Schroeder-Bernstein property for Banach spaces", Contemp. Math. 85: 61–78.