User:Boris Tsirelson/Sandbox1: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Boris Tsirelson
No edit summary
imported>Boris Tsirelson
No edit summary
Line 1: Line 1:
=Schrőder-Bernstein property=
=Schröder-Bernstein property=


The general idea of the Cantor–Bernstein–Schroeder theorem and related results may be formulated as follows. If ''X'' is similar to a part of ''Y'' and at the same time ''Y'' is similar to a part of ''X'' then ''X'' and ''Y'' are similar. In order to be specific one should decide
The general idea of the Cantor–Bernstein–Schroeder theorem and related results may be formulated as follows. If ''X'' is similar to a part of ''Y'' and at the same time ''Y'' is similar to a part of ''X'' then ''X'' and ''Y'' are similar. In order to be specific one should decide

Revision as of 04:02, 2 September 2010

Schröder-Bernstein property

The general idea of the Cantor–Bernstein–Schroeder theorem and related results may be formulated as follows. If X is similar to a part of Y and at the same time Y is similar to a part of X then X and Y are similar. In order to be specific one should decide

  • what kind of mathematical objects are X and Y,
  • what is meant by "a part",
  • what is meant by "similar".

In the classical Cantor–Bernstein–Schroeder theorem

  • X and Y are sets (maybe infinite),
  • "a part" is interpreted as a subset,
  • "similar" is interpreted as equinumerous.

Not all statements of this form are true. For example, let

  • X and Y are triangles,
  • "a part" means a triangle inside the given triangle,
  • "similar" is interpreted as usual in elementary geometry: triangles related by a dilation (in other words, "triangles with the same shape up to a scale factor", or equivalently "triangles with the same angles").

Then the statement fails badly: every triangle X evidently is similar to some triangle inside Y, and the other way round; however, X and Y need no be similar.

Notes

References

Srivastava, S.M. (1998), A Course on Borel Sets, Springer. See Proposition 3.3.6 (on page 96), and the first paragraph of Section 3.3 (on page 94).

Gowers, W.T. (1996), "A solution to the Schroeder-Bernstein problem for Banach spaces", Bull. London Math. Soc. 28: 297–304.

Casazza, P.G. (1989), "The Schroeder-Bernstein property for Banach spaces", Contemp. Math. 85: 61–78.

External links

Theme and variations: Schroeder-Bernstein

When does Cantor Bernstein hold?