Field extension: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Gareth Leng
No edit summary
imported>Gareth Leng
No edit summary
Line 2: Line 2:
In [[mathematics]], a '''field extension''' of a [[field (mathematics)|field]] ''F'' is a field ''E'' such that ''F'' is a [[subfield]] of ''E''.  We say that ''E''/''F'' is an extension, or that ''E'' is an extension field of ''F''.
In [[mathematics]], a '''field extension''' of a [[field (mathematics)|field]] ''F'' is a field ''E'' such that ''F'' is a [[subfield]] of ''E''.  We say that ''E''/''F'' is an extension, or that ''E'' is an extension field of ''F''.


Foe example, the field of [[complex number]]s '''C''' is an extension of the field of [[real number]]s '''R'''.
For example, the field of [[complex number]]s '''C''' is an extension of the field of [[real number]]s '''R'''.


If ''E''/''F'' is an extension then ''E'' is a [[vector space]] over ''F''.  The ''degree'' or ''index'' of the field extension [''E'':''F''] is the [[dimension]] of ''E'' as an ''F''-vector space.  The extension '''C'''/'''R''' has degree 2.  An extension of degree 2 is ''quadratic''.
If ''E''/''F'' is an extension then ''E'' is a [[vector space]] over ''F''.  The ''degree'' or ''index'' of the field extension [''E'':''F''] is the [[dimension]] of ''E'' as an ''F''-vector space.  The extension '''C'''/'''R''' has degree 2.  An extension of degree 2 is ''quadratic''.

Revision as of 05:36, 5 February 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a field extension of a field F is a field E such that F is a subfield of E. We say that E/F is an extension, or that E is an extension field of F.

For example, the field of complex numbers C is an extension of the field of real numbers R.

If E/F is an extension then E is a vector space over F. The degree or index of the field extension [E:F] is the dimension of E as an F-vector space. The extension C/R has degree 2. An extension of degree 2 is quadratic.

The tower law for extensions states that if K/E is another extension, then

Algebraic extension

An element of an extension field E/F is algebraic over F if it satisfies a polynomial with coefficients in F, and transcendental over F if it is not algebraic. An extension is algebraic if every element of E is algebraic over F. An extension of finite degree is algebraic, but the converse need not hold. For example, the field of all algebraic numbers over Q is an algebraic extension but not of finite degree.

Separable extension

An element of an extension field is separable over F if it is algebraic and its minimal polynomial over F has distinct roots. Every algebraic element is separable over a field of characteristic zero. An extension is separable if all its elements are. A field is perfect if all finite degree extensions are separable. For example, a finite field is perfect.

Simple extension

A simple extension is one which is generated by a single element, say a, and a generating element is a primitive element. The extension F(a) is formed by the polynomial ring F[a] if a is algebraic, otherwise it is the rational function field F(a).

The theorem of the primitive element states that a finite degree extension E/F is simple if and only if there are only finitely many intermediate fields between E and F; as a consequence, every finite degree separable extension is simple.

References