Stably free module: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (remove WPmarkup; subpages) |
mNo edit summary |
||
Line 14: | Line 14: | ||
==References== | ==References== | ||
* {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed. | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | page=840}} | * {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed. | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | page=840}}[[Category:Suggestion Bot Tag]] |
Latest revision as of 17:00, 21 October 2024
In mathematics, a stably free module is a module which is close to being free.
Definition
A module M over a ring R is stably free if there exist free modules F and G over R such that
Properties
- A module is stably free if and only if it possesses a finite free resolution.
See also
References
- Serge Lang (1993). Algebra, 3rd ed.. Addison-Wesley. ISBN 0-201-55540-9.